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Current status of Ontario wind energy
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Increasing wind and increasing system volatility
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Stochastic programming model: key decision variables

vin: on/off status of slow generator i at each time
h,Vie Jg;

on/off status of fast generator i at each time 4 in
scenario s,Vi € Jy, s € S,

S =

Vin:

All other variables are dependent on the variable v.



Stochastic programming model
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Stochastic programming model: unit commitment
constraints

The unit commitment constraints for a generator j € J is defined

as:

Yin 2 Vih — Vjh—1 Vh e H (63.)
Zih 2 Vijh—1 — Vin Vh e H (Gb)
u. 1 yj’h_TJ,_’_] + T —i—th < th Vh S H (GC)
a Zh—T;+1 Tt G <l —vy vhe H (6d)
Vih—1—Vjn + Yjn — h:() Yhe H (66)
Vin € {0, 1}, Yjn: Zjn € [0, 1] Yhe H (6f)

The constraint sets U,, U,,, Uy, are defined accordingly:
U= N U, Uy, = N WU, = N U 7
= QW W= o0 W Uy = 0 (7)



Stochastic programming model: reserve constraints

Z IS =M Z dj, Vhe H (8a)
jel leL

Z TSy + Z 1oy, =M Z d, YheH (8b)

JjeJ JjeJ leL

RS



Stochastic programming model: reserve constraints

> rshzng) dj, VheH  (8a)
RS — JjeJ leL

> rsy+ > roy=m) dy, VheH  (8b)

jeJ jeJ leL

» We assume the contingency constraint is implemented
exogenously following NERC N-1 rule.



Stochastic programming model: network constraints

D Pt Wht D o=
JEm i€l nmeE
D Font D di+ gshm vmeV,heH (9a)
. mneE Ly,
NUZ 0 o = bl @ — 03— Yh)  Vmn€E,heH (9b)
_fmn gf;lnh gfmn VmneE heH (9C)



Stochastic programming model: capacity constraints

Pyvin < pj, VjeJ heH (10a)
Pjn + 155, < Pjvjn VjeJ heH (10b)
Py + 18}y, + roj, < Pj vjeJ heH (10c)
o ) P TP S B  WjeJheH (109
PP sy oy, <R YjeJ heH (10e)
rsiy < RS; VieJ heH (10f)
roj, < RO; VjeJ heH (10g)
wy, < Wy, Vie L ,he H (10h)




Our challenges: computational efficiency

» for stochastic linear programming problem, L-shape
method is efficient and popular;



Our challenges: computational efficiency

» for stochastic linear programming problem, L-shape
method is efficient and popular;

» stochastic integer programming problem is much more
challenging!



Our challenges: computational efficiency

» for stochastic linear programming problem, L-shape
method is efficient and popular;

» stochastic integer programming problem is much more
challenging!

» both the first stage and the second stage of the stochastic
unit commitment model are integer problem!



Our challenges: computational efficiency

» for stochastic linear programming problem, L-shape
method is efficient and popular;

» stochastic integer programming problem is much more
challenging!

» both the first stage and the second stage of the stochastic
unit commitment model are integer problem!

» cutting-plane method is very effective for integer problem;



Our challenges: computational efficiency

» for stochastic linear programming problem, L-shape
method is efficient and popular;

» stochastic integer programming problem is much more
challenging!

» both the first stage and the second stage of the stochastic
unit commitment model are integer problem!

» cutting-plane method is very effective for integer problem:;

» how about stochastic integer problem?



Our solution: scenario crossing deep cuts

Definition
Cy, C Jis a (s, h)-cover if

> Pt ) Wy <(1+4my) ) dj,.

JECq i€l leL

If in addition

D P+ ) Wy P> (14n)) diy VieJ—Cg,

JGCYh iel leL

then the cover C is simple.

(11)



Our solution: scenario crossing deep cuts

PROPOSITION

If(1 +ny) ZleL dyy, = Zier Win, < (1405) Zier dip, — Xier Wi,
then (i) a (sy, hy)-cover is a/so a (sa, hy)-cover; (ii) any

(82, hy)-cover has a (s, hy)-cover subset.



Our solution: scenario crossing deep cuts

PROPOSITION B
Then the strengthened (s, h)-cut

R/ P (12)
e max{P;, A; } Ay
is valid for p*(-). If in addition,

A <P Yjed—C,

and (11) holds strictly for some indices, then (12) is
facet-defining for p’(-).



Our solution: scenario crossing deep cuts

Definition
Two generators a and b are symmetric if a and b have identical
physical features and are located on one bus.

PROPOSITION

Assume there are «x symmetric pairs in the electricity grid. Let
QS be the feasible set of (v*,y*,z*) in p*(A*), and Q' be the
reduced feasible set after applying the k symmetry cuts:

Yon Vo1 T Va1 = Yy for all symmetric pairs (a,b),

then
[0}

!
0% =2,

i.e., the feasible region shrinks exponentially.



Numerical test: RTS-96 system

Table: Generator Mix

Type Technology | No. units | Capacity(MW) | list of units
ui2 Oil/Steam 5 60 16-20
u20 Oil/CT 4 80 1-2,5-6
us0 Hydro 6 300 25-30
u76 Coal/Steam 4 304 3-4,7-8
U100 Oil/Steam 3 300 9-11
U155 | Coal/Steam 4 620 21-22, 31-32
u197 Oil/Steam 3 591 12-14
U350 | Coal/3 Steam 1 350 33
U400 Nuclear 2 800 23-24
W150 Wind 1 150

W100 Wind 1 100




Numerical test: RTS-96 system

Table: Bus Generator Incidence

Bus | Generators || Bus | Generator || Bus | Generator
1 1-4 7 9-11 18 23
2 5-8 13 12-14 21 24
4 W150 15 16-21 22 25-30
5 W100 16 22 23 31-33




138kV

Figure 1 - IEEE One Area RTS-96
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installed capacity
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Effect of symmetry cut

Optimal schedule 1 Optimal schedule 2
Gen | switch on | switch off || Gen | switch on | switch off
7 6 23 8 6 23
3 7 23 3 7 23
4 7 23 4 7 23
8 7 23 7 7 23
13 7 21 13 7 21
12 8 22 12 8 22
14 8 22 14 8 22
17 8 12 16 8 12
20 8 12 18 8 12
2 10 11 1 10 11

Table: Optimal Schedule for Two-scenario Instance. Generators not
shown in the table are always on. No wind curtailment nor demand
shedding appears in this optimal schedule. The optimal objective
value is $798,256. Total demands for the two scenarios over the 24
hrs are 56811.5MW and 56571.8MW.



Benchmarking report

CPLEX B&B CPLEX D& S Cover Cuts Both cuts

S nodes seconds nodes seconds nodes seconds Ncuts node second
2 3027 78 3453 75 2460 53 2 48 37

5 1051 73 2544 224 185 17 10 25 10
10 3715 703 3137 870 1741 529 12 117 101
15 37040 5053 44838 21500 1631 1064 23 1103 1176
20 5279 5023 8684 4096 3592 3359 29 237 282
25 7281 4191 23533 18998 1667 2920 42 621 1305

Table: Statistics of running time. The number of cuts shown in table is
for cover cuts; the number of symmetry cuts is constantly 36, which is
not shown in the table.

S 2 5 10 15 20 25 mean median
cover cut 29%  76% 24% 78% 17% 30% 42% 29%
both cuts 50%  86% 85% 76%  93% 68% 76% 80%

Table: Reduction rate of running time
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Conclusion
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» the system volatility could be safely controlled.
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