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Wind as a clean and renewable energy source



Current status of Canada wind energy



Legend

IN SERVICE IN DEVELOPMENT

Map contains current and 
future grid-connected 
projects only

Wolfe Island 198 MW

Amaranth II 132 MW
Amaranth I 68 MW

Underwood (Enbridge) 181 MW

Ripley South 76 MW

Kingsbridge l 40 MW

Port Burwell (Erie Shores) 99 MW

Port Alma (Kruger) 101 MW

Prince I 99 MW Prince Il 90 MW

Gosfield 51 MW

Dillon Wind Centre (Raleigh) 78 MW

Kruger Energy Chatham 99 MW

Spence Wind Farm (Talbot) 99 MW

Greenwich 99 MW

McLean’s Mountain  50 MW
McLean’s Mountain 10 MW

Comber West 83 MW

Comber East 83 MW

Pointe Aux Roches 49 MW

Conestogo 69 MW

Summerhaven 125 MW

Bow Lake 20 MW

ONTARIO WIND GENERATORS

January 2012

Goulais Wind Farm 25 MW

Port Dover and Nanticoke 105 MW

Farm-Owned Power 100 MW

Current status of Ontario wind energy
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Increasing wind and increasing system volatility

In Figure 2(a), three daily demand curves are shown for three consecutive days (data from
[18]). Figure 2(b) provides three daily wind speed curves for three consecutive days (data from
[7]). From these figures, we see that the variability in hourly demand and wind speed cannot
be ignored (particularly for wind speed), doing so could result in unmet demand or increased
operating costs. Following the typical strategy in stochastic programming, every possible ran-
dom situation is represented by a scenario with the associated probability. Specifically, because
demand (or generation) could change dramatically over seasons, one year is decomposed into
a set of “seasons,” denoted by I, during which daily demands (or wind speed) are reasonably
consistent. Then, each season can be represented by a single day. One possible demand curve
(or wind curve) of a single day is represented by a scenario. The randomness of daily demand
(or generation, respectively) is represented by S, a set of scenarios, and their associated dis-
crete probabilities. Furthermore, for modeling operations of each energy component, a single
day is divided into a set of time slots T (typically 24 slots for 24 hours). Typically, the system
is designed such that for every season and in every scenario: (1) demand in all time slots must
be met by the sum of energy from various sources; (2) the “inventory level” in the storage
device is balanced with respect to inflow and outflow and energy efficiency; (3) the production
level of each component of the system must be less than or equal to the capacity of that com-
ponent. Tables 1 and 2 summarize the variables and parameters used in the model to meet
the objective.

(a) Daily Demand Curves (b) Daily Wind Speed Curves

Figure 2: Daily Curves for Demand and Wind Speed
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All we need is prediction?

Prediction is very difficult,
especially about the future.

– Niels Bohr

Prediction + Operational Flexibility = Success!

I we need more accurate forecasting;
I we need operational flexibility more than

reserve can provide;
I we need operational flexibility less expensive

than reserve.
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Benefit of stochastic programming approach

1. rigorous mathematical framework;

2. simutaneously considers many scenarios;
3. generates an optimal proactive baseline schedule; and

a set of reactive adjustments;
4. guranteed optimality;
5. proven confidence interval;
6. more robust and secure grid;
7. more integrated wind;
8. lower energy cost for the society!
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Stochastic programming model: key decision variables

vih: on/off status of slow generator i at each time
h, ∀i ∈ Js;

vs
ih: on/off status of fast generator i at each time h in

scenario s,∀i ∈ Jf , s ∈ S;

All other variables are dependent on the variable v.
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Stochastic programming model

min

first stage︷ ︸︸ ︷∑
h∈H
j∈Js

(cu
j yjh + cd

j zjh + cm
j vjh) +

second stage︷ ︸︸ ︷∑
s∈S

πs( ∑
h∈H
j∈Jf

(cu
j ys

jh + cd
j zs

jh + cm
j vjh) +

∑
h∈H
j∈J

cp
j ps

jh
)

s.t. (yJs , zJs , vJs) ∈ UJs (1)
(yJf , zJf , vJf ) ∈ Us

Jf
,∀s ∈ S (2)

(ps, ws) ∈ Cs,∀s ∈ S (3)
(ps, ws) ∈ Ns,∀s ∈ S (4)
(ps, ws) ∈ Rs,∀s ∈ S (5)



Stochastic programming model: unit commitment
constraints

The unit commitment constraints for a generator j ∈ J is defined
as:

Uj :=



yjh > vjh − vj,h−1 ∀h ∈ H (6a)
zjh > vj,h−1 − vjh ∀h ∈ H (6b)
yj,h−T j+1 + · · ·+ yjh 6 vjh ∀h ∈ H (6c)

zj,h−T j+1 + · · ·+ zjh 6 1 − vjh ∀h ∈ H (6d)
vj,h−1 − vjh + yjh − zjh = 0 ∀h ∈ H (6e)
vjh ∈ {0, 1}, yjh, zjh ∈ [0, 1] ∀h ∈ H (6f)

The constraint sets UJ,UJs ,UJf are defined accordingly:

UJ := ∩
j∈J

Uj,UJs := ∩
j∈Js

Uj,UJf := ∩
j∈Jf

Uj (7)



Stochastic programming model: reserve constraints

Rs :=


∑
j∈J

rss
jh > ηs

∑
l∈L

ds
lh ∀h ∈ H (8a)

∑
j∈J

rss
jh +

∑
j∈J

ros
jh > η

∑
l∈L

ds
lh ∀h ∈ H (8b)

I We assume the contingency constraint is implemented
exogenously following NERC N-1 rule.
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Stochastic programming model: network constraints

Ns :=



∑
j∈Jm

ps
jh+

∑
i∈Im

ws
ih +

∑
nm∈E

f s
nmh =

∑
mn∈E

f s
mnh +

∑
l∈Lm

ds
lh + gshm ∀m∈V, h∈H (9a)

f s
mnh = bmn(θ

s
mh − θs

nh − γs
mnh) ∀mn∈E, h∈H (9b)

−f mn 6 f s
mnh 6 f mn ∀mn∈E, h∈H (9c)

γmn 6 γs
mnh 6 γmn ∀mn∈E, h∈H (9d)

θs
ref ,h = 0 ∀h∈H (9e)



Stochastic programming model: capacity constraints

Cs :=



Pjvjh 6 ps
jh ∀j ∈ J, h ∈ H (10a)

ps
jh + rss

jh 6 Pjvjh ∀j ∈ J, h ∈ H (10b)

ps
jh + rss

jh + ros
jh 6 Pj ∀j ∈ J, h ∈ H (10c)

ps
j,h−1 − ps

j,h 6 Rj ∀j ∈ J, h ∈ H (10d)

ps
jh − ps

j,h−1 + rss
jh + ros

jh 6 Rj ∀j ∈ J, h ∈ H (10e)

rss
jh 6 RSj ∀j ∈ J, h ∈ H (10f)

ros
jh 6 ROj ∀j ∈ J, h ∈ H (10g)

ws
lh 6 w̃s

lh ∀l ∈ L, h ∈ H (10h)



Our challenges: computational efficiency

I for stochastic linear programming problem, L-shape
method is efficient and popular;

I stochastic integer programming problem is much more
challenging!

I both the first stage and the second stage of the stochastic
unit commitment model are integer problem!

I cutting-plane method is very effective for integer problem;
I how about stochastic integer problem?
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Our solution: scenario crossing deep cuts

Definition
Csh ⊂ J is a (s, h)-cover if∑

j∈Csh

Pj +
∑
i∈I

w̃s
ih < (1 + ηs)

∑
l∈L

ds
lh.

If in addition∑
j∈Csh

Pj +
∑
i∈I

w̃s
ih + Pi > (1 + ηs)

∑
l∈L

ds
ld ∀i ∈ J − Csh, (11)

then the cover C is simple.



Our solution: scenario crossing deep cuts

PROPOSITION
If (1 + ηs)

∑
l∈L ds1

lh1
−

∑
i∈I w̃s1

ih1
6 (1 + ηs)

∑
l∈L ds2

lh2
−

∑
i∈I w̃s2

ih2
,

then (i) a (s1, h1)-cover is also a (s2, h2)-cover; (ii) any
(s2, h2)-cover has a (s1, h1)-cover subset.



Our solution: scenario crossing deep cuts

PROPOSITION
Let C be a (s, h)-cover and ∆s

h =
∑

l∈L ds
lh −

∑
j∈C Pj −

∑
i∈I w̃s

ih.
Then the strengthened (s, h)-cut

∑
j∈J−C

ps
jh

max{Pj,∆
s
h}

+
∑
i∈I

ws
ih
∆s

h
> 1 (12)

is valid for ρs(·). If in addition,

∆s
h 6 Pj, ∀j ∈ J − C,

and (11) holds strictly for some indices, then (12) is
facet-defining for ρs(·).



Our solution: scenario crossing deep cuts

Definition
Two generators a and b are symmetric if a and b have identical
physical features and are located on one bus.

PROPOSITION
Assume there are κ symmetric pairs in the electricity grid. Let
Ωs be the feasible set of (vs, ys, zs) in ρs(λs), and Ωs′ be the
reduced feasible set after applying the κ symmetry cuts:

ys
ah + vs

a,h−1 + vs
b,h−1 > ys

bh, for all symmetric pairs (a,b),

then

|Ωs′| =
|Ωs|

2κ
,

i.e., the feasible region shrinks exponentially.



Numerical test: RTS-96 system

Table: Generator Mix

Type Technology No. units Capacity(MW) list of units
U12 Oil/Steam 5 60 16-20
U20 Oil/CT 4 80 1-2,5-6
U50 Hydro 6 300 25-30
U76 Coal/Steam 4 304 3-4, 7-8

U100 Oil/Steam 3 300 9-11
U155 Coal/Steam 4 620 21-22, 31-32
U197 Oil/Steam 3 591 12-14
U350 Coal/3 Steam 1 350 33
U400 Nuclear 2 800 23-24
W150 Wind 1 150 .
W100 Wind 1 100 .



Numerical test: RTS-96 system

Table: Bus Generator Incidence

Bus Generators Bus Generator Bus Generator
1 1-4 7 9-11 18 23
2 5-8 13 12-14 21 24
4 W150 15 16-21 22 25-30
5 W100 16 22 23 31-33
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The IEEE Reliability Test System = 1996 

Application of Probability Methods Subcommittee 
A report prepared by the Reliability Test System Task Force of the 

ABslRAcT 
This oeportdescribesan enhanced testsystem ( W W ) f o r  

MW In bulk power system reliability evaluation studies. The value of 
the tost system is that it will permit comparative and benchmark 
studios to be perf0me-d on new and existing reliability evaluation 
techniques. The test system was developed by modifying and 
updating the original IEEE RTS (referred to as RTS79 hereafter) to 
reflect changes In evaluation methodologies and to overcome 
perceived deficiencies. - 

The first version of the IEEE Reliability Test System (RTS 
79) was developed and published in 1979 [ l ]  by the Application of 
Probability Methods (APM) Subcommittee of the Power System 
Englaeering Committee. It was developed to satisfy the need for a 
standardized data base to test and compare results from different 
power system reliability evaluation methodologies. As such, RTS-79 
was designed to b@ a reference system that contains the core data 
and system parameters necessary for composite reliability evaluation 
methods. It was recognized at that time that enhancements to RTS 
79 may be required for particular applications. However, it was felt 
that additional data needs could be supplemented by individual 
authors and or addressed in future extensions to the RTS-79. 

In 1986 a second version of the RTS was developed (RTS 
86) and published [2] with the objective of making the RTS more 
useful in assessing different reliability modeling and evaluation 
methodologies. Experience with RTS79 helped to Identify the 
critical additional data requirements and the need to Include the 
reliability Indices of the test system. RTS-86 expanded the data 
systam primarily relating to the generation system. The revision not 
only extended the number of generating units in the RTS-79 data 
base but also included unit derated states, unit scheduled 
mairJtenance, load forecast uncertainty and the effect of 
interconnection. The advantage of RTS-86 lies In the fact that it 
presented the system reliability indices derived through the use of 
rigorous solution techniques without any approximations in the 
evaluation process. These exact indices serve to compare with 
resurts obtained from other methods. 

Since the publication of RTS-79, several authors have 
reported the results of their research in the IEEE Journals and many 
international journals using this system. Several changes in the 
electric utility industry have taken place since the publication of RTS- 
79, e.g. transmission access, emission caps, etc. These changes 
along with certain perceived enhancements to RTS-79 motivated this 
task force to suggest a multi-area RTS incorporating additional data. 

* 
Cu-Chairmen: C. Grigg and P.Wong; P. Albrecht, R Allan, M. 

Bhavaraju, R Billinton, 0. Chen, C. Fong, S. Haddad, S. Kuruganty, 
W. U, R. Mukerji, D. Patton, N. Rau, D. Reppen, k Schneider, M. 
Shaliidehpour. C. Singh. See Biographies for affiliations. 

96 WM 326-9 PWRS .4 paper recommended and approved by the IEEE 
Power System Engineering Committee of the IEEE Power Engineering 
Society for presentation at the 1996 IEEFYPES Winter Meeting, January 21- 
25, 1996, Baltimore, MD. Manuscript submitted August 1, 1995; made 
avai!able for printing January 15, 1996. 

It should be noted that In developing and adopting the 
various parameters for RTS-96, there was no Intention to develop a 
test system which was representative of any specific or typical power 
system. Forcing such a requirement on RTs-98 would result in a 
system with less universal characteristics and therefore would be less 
useful as a reference for testing the impact of different evdraation 
techniques on diveme applications and technologies. Ofbe of the 
Important requirements of a good test system is that it should 
represent, as much as possible, all the different technologies and 
configurations that could be encountered on any system. RTs96 
therefore has to be a hybrid and atypical system. 

SYslEMTOPOUXY 
The topology for RTS-79 is shown in Figure 1 and is 

labeled 'kea A' Si- the demand for methodologles that can 
analyze multi-area power systems has been Increasing lately due to 
increases in interregional transactions and advances in available 
computing power, the task force dedded to develop a multi-area 
reliability test system by linking various single RTS79 areas. Figure 
2 shows a two-area system developed by merging two single areas - - 'Area A' and 'Area B' through three interconnections. As shown the 
two areas are interconnected by the following new Interconnections: 
0 
0 
0 

51 mile 230 kV line connecting bus # 123 and bus # 217 
52 mile 230 kV line connecting bus # 113 and bus # 215 
42 mile 138 kV line connecting bus # 107 and bus # 203. 

38 kV 

Figure 1 - IEEE One Area RTS-96 

0885-8950/99/$10.00 0 1996 IEEE 

I 30 generators;
I 24 buses;
I 34 lines;
I installed capacity

3,405MW.



Effect of symmetry cut
Optimal schedule 1 Optimal schedule 2

Gen switch on switch off Gen switch on switch off
7 6 23 8 6 23
3 7 23 3 7 23
4 7 23 4 7 23
8 7 23 7 7 23
13 7 21 13 7 21
12 8 22 12 8 22
14 8 22 14 8 22
17 8 12 16 8 12
20 8 12 18 8 12
2 10 11 1 10 11

Table: Optimal Schedule for Two-scenario Instance. Generators not
shown in the table are always on. No wind curtailment nor demand
shedding appears in this optimal schedule. The optimal objective
value is $798,256. Total demands for the two scenarios over the 24
hrs are 56811.5MW and 56571.8MW.



Benchmarking report

CPLEX B&B CPLEX D& S Cover Cuts Both cuts
S nodes seconds nodes seconds nodes seconds Ncuts node second
2 3027 78 3453 75 2460 53 2 48 37
5 1051 73 2544 224 185 17 10 25 10

10 3715 703 3137 870 1741 529 12 117 101
15 37040 5053 44838 21500 1631 1064 23 1103 1176
20 5279 5023 8684 4096 3592 3359 29 237 282
25 7281 4191 23533 18998 1667 2920 42 621 1305

Table: Statistics of running time. The number of cuts shown in table is
for cover cuts; the number of symmetry cuts is constantly 36, which is
not shown in the table.

S 2 5 10 15 20 25 mean median
cover cut 29% 76% 24% 78% 17% 30% 42% 29%
both cuts 50% 86% 85% 76% 93% 68% 76% 80%

Table: Reduction rate of running time



Conclusion

I Canada could benefit from the abundant wind resource; if

I the system volatility could be safely controlled.
I along with prediction, operational flexibility is an extremely

important mechanism;
I Stochastic integer programming approach can greatly

enhance the operational flexibility; however,
I computational efficiency is its bottleneck.
I We build a mathematically rigorous stochastic optimization

model for the problem.
I Our research on cross-scenario deep cuts speeds up the

state-of-art CPLEX solver significantly!
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