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• Supported by DOE ASCI/ASAP
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Outline

• Introduction, problem statement
• Framework: Approximation levels
• D&C (tridiagonal/block-tridiagonal)
• Analysis and experimental results
• Summary and outlook
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Introduction
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Central Problem I

• Given: Symmetric matrix            ,
preferably “diagonally heavy”

n nA ×∈ R
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Central Problem II

• Given: Symmetric matrix
(preferably “diagonally heavy”),
tolerance parameter

• Wanted: Approximate spectral
decomposition                , s.t.

                         and

- Essentially the full spectrum required

ˆ ˆ ˆ|| ||TA V V τ− Λ ≤

ˆ ˆ ˆ TA V V≈ Λ

mach
ˆ ˆ|| ||TV V I ε− ≤

n nA ×∈ R

τ
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Application:
Quantum Chemistry

• Quantum-mechanical equations for
many-electron systems (non-relativistic
time-independent Schroedinger Equation)

• Restricted Closed-Shell Hartree-Fock
Approximation

• Linearization: expand unknown molecular
orbitals into finite series of basis functions
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Application:
Quantum Chemistry

• Construct the Fock matrix F
and the Overlap matrix S fi

• Roothaan Equations (nonlinear
eigenvalue problem):
                   F(C) C = S C E

• Self-consistent-field (SCF) procedure fi
sequence of (generalized) linear
eigenproblems
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Application:
Quantum Chemistry

• Objective:
- Develop efficient approximate linear

eigensolver for use in SCF procedure

• Desirable properties (“wish list”):
- Variable accuracy parameter
- Efficiency
- Parallelization
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Approximation Levels
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3 Levels of Approximation
• Approximate A by a symmetric block-

tridiagonal matrix B.

(thresholding, reordering, bandwidth
reduction,...)
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Original Matrix
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Block-Tridiagonal
Approximation B
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QC Linear Alkane:
alkane80
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Approximation Error I

• Error caused by thresholding and
reordering can be bounded

where     …eigenvalues of A
              …eigenvalues of B
              …thresholding tolerance

1| |i i nα β τ− ≤

iα
iβ

1τ
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3 Levels of Approximation
• Approximate A by a symmetric block-

tridiagonal matrix B.
• Approximate the off-diagonal blocks of B

by low(er) rank matrices (  B’).

(SVD-based rank-ri approximations)
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Block-Tridiagonal
Approximation B
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Rank-1 Approximation of
Off-Diagonal Blocks
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Relative Errors in
2nd Iteration Energy
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Approximation Error II

• Error caused by rank approximation of
off-diagonal blocks can be bounded as

where     …eigenvalues of B
              …eigenvalues of B’
                 (approximated blocks)
              …j-th singular value of the k-th
                 subdiagonal block

1,2,..., 1
1

| | 2 max
k

k

m
k

i i jk p
j r

nβ λ σ
= −

= +

− ≤ ∑
iβ
iλ
k
jσ
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3 Levels of Approximation
• Approximate A by a symmetric block-

tridiagonal matrix B.
• Approximate the off-diagonal blocks of B

by low(er) rank matrices (  B’).
• Apply (approximative) block divide-and-

conquer algorithm to B’.

(relaxed deflation,…)
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Divide-and-Conquer for
TridiagonalTridiagonal Problems

[Golub (1973); Bunch et al. (1978); Cuppen
(1981); Dongarra & Sorensen (1987); Gu &
Eisenstat (1994/1995); Tisseur & Dongarra
(1999);...]
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Divide-and-Conquer

Split

Transform - Solve - Back-Transform
Transform - Solve - Back-Transform

.

.

.
Transform - Solve - Back-Transform

Synthesize
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Tridiagonal
Divide-and-Conquer

• Central task:
Eigenvalues and -vectors of a
rank-one modification problem

with a diagonal matrix D

TD xx+
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Deflation

• Zero component          fi corresponding
eigenpair is known explicitly

• Multiple entry      fi corresponding
eigenpairs can be computed cheaply

• Problem size can be reduced (deflated)
• Cost for eigenvector update is reduced

(block structured eigenvector matrix)

id

0ix =

TD xx+
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Tridiagonal D&C

• Accumulation (multiplication) of
eigenvector matrices

• Theoretical arithmetic complexity:

• In practice often lower due to deflation
• One of the fastest algorithms available

3 24
3 ( ) flopsc n O n+
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(Approximative)
Divide-and-Conquer for

Block-Tridiagonal Matrices
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Block-Tridiagonal D&C

• Subdivision (p blocks):
- SVDs (off-diagonal)
- Corrections and

eigendecompositions
(diagonal blocks)

• Synthesis:
- ri rank-one modifications

per off-diagonal block
- Best merging order:

lowest rank last
1

,  1,2,..., 1
ir

Ti i i
i j j j

j

E u v i pσ
=

= = −∑
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Relaxed Deflation

• Standard deflation tolerance (LAPACK):

• Relaxed deflation tolerance
- Absolute eigenvalue error proportional to
- Allows for (potentially) much more deflation
- Significant computational savings
- Very attractive if medium/low accuracy is

sufficient

':L c Bτ ε=

2 Lτ τ<
2τ
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Deflation-Experiments I

• 3 test matrices with prescribed eigenvalue
distributions:
- “clustered”: clustered around 0
- “random”: random between -1 and 1
- “uniform”: uniform between -1 and 1

• Additionally, “block random” matrix:
- random diagonal blocks, off-diagonal blocks

from random singular vectors
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Deflation-Experiments II
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Deflation-Experiments III



11/15/01 33

Runtimes --
Comparison with LAPACK

• “block random”: n=3000, p=300 (10x10),
eigenvectors accumulated, times in [s]

2τ

498.8229.417.510-6

1551.41529.71501.7dsbevd
64.134.811.010-2

1429.6582.623.1 10-10

2344.6942.630.2
ri=10ri=5ri=1

LAPACK tolerance
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Runtimes --
Comparison with LAPACK
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QC: SCF Procedure
Compute S
Determine U s.t. U*SU = I
Guess C0

Do i = 0, 1, 2, …
Compute F(Ci)
Compute F’i = U*F(Ci)U
Solve F’iC’(i+1) = C’(i+1)E(i+1)

Compute C(i+1) = UC’(i+1)

Check for convergence

←
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Runtimes --
Full SCF Procedure
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Experimental Analysis

• Efficient
- due to good data locality (maps well onto

modern memory hierarchies)
- due to deflation

• Orders of magnitude faster than LAPACK
if low accuracy requirements allow for
- Low rank approximations
- Large deflation tolerances
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Summary and Outlook
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Documentation

• Eigenvectors via accumulation

- Rank-one off-diagonal approximations:
“An Extension of the Divide-and-Conquer Method for a Class of
Symmetric Block-Tridiagonal Eigenproblems”, Gansterer, Ward,
Muller, 2000. (submitted, also TR UT-CS-00-447)

- Arbitrary rank off-diagonal approximations:
“Computing Approximate Eigenpairs of Symmetric Block
Tridiagonal Matrices”, Gansterer, Ward, Muller, 2001.
(submitted, also TR UT-CS-01-463)
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Work in Progress/
Future Work

• Alternative eigenvector computation
- URV decomposition + postprocessing
- Higher rank modifications, FMM
- Newton-type approach

[Dongarra, Moler, Wilkinson (1983)]

• Higher accuracy
- Better block-tridiagonal/banded

approximation

• Parallelization
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Future Work

• Application to QC Problems (CalTech)
- Utilize information from previous SCF-cycle
- “Localization”
- Alternative eigensolvers (Krylov-subspace

methods, Jacobi-Davidson,… ?)
- Methods for nonlinear eigenproblems

• Use the framework as a preconditioner
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More Information

http://www.cs.utk.edu/~cape/
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