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Let {2 C R" be a bounded convex domain, f, g smooth
positive functions. If u € C*(Q) is a uniformly con-
vex solution of

f(z)
9(Du)
then Du : Q@ — R" is a diffeomorphism onto * =
Du ().

(1) det D?u =

in (),

Conversely, given bounded convex domains 2, 2* in
R™ and smooth positive functions f, g satisfying the

compatibility condition

8 | s@ye= | gy

is there a convex solution of

o flx) .
3) det D“u = o(Du) in (),
Du(Q) = Q*?



Monge mass transport problem. Minimize

(4 C(s) = / 2 — s(x)f (x)da

among all maps s : {2 — 2* which push forward the
measure dy = f(x)dr onto dv = g(y)dy.

e There is a unique weak solution s of the problem
and s = Du for some convex function u solving (3)

in a weak sense [Brenier 1990].

o If O* is convex, and f,g € C%% are positive, then
u € C*%(Q) for any a € (0,1) [Caffarelli 1992].

o If O, Q* are uniformly convex, 09, 90Q* € C** and
f e 0%(Q), g ¢ C’O’O‘(ﬁ*) are positive, then v €
C?%(Q) [Caffarelli 1996; Urbas 1997 (under slightly

stronger regularity assumptions)].

Questions (i) What can be proved for other cost
functions? Existence and uniqueness results for strictly
convex costs have been proved by Gangbo and Mc-
Cann, Caffarelli. Very little is known about regular-

ity of optimal maps for nonquadratic costs.
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(ii) What can be proved if det D?u is replaced by

fA, .5 An)

where A\q,..., \, are either:
e the eigenvalues of D?u;

e the principal curvatures of the graph of u, i.e., the

eigenvalues of

relative to  0;; + DyuD;u.

This leads to the boundary value problems

F(D*u) = g(z,u,Du) in €,

(Hessian)
Du(2) = QF.

F(Du,D?*u) = g(z,u) in €,

(Curvature)
Du(2) = QF.
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What are natural conditions to impose on f7 If u is

a locally uniformly convex solution of

F(D?*u) = g(xz,u,Du) in €,

5) Du(Q2) = QF,

then the Legendre transform

u'(y) =z y—u(z), y=Du(z),

is a locally uniformly convex solution of
(6)
1

F([D%u*]"Y) ~ g(Du*,y- Du* — u*,y)
Du* (") = Q.

in QF,

So u* satisfies a similar kind of problem with

1
f A, ) = — —.
FOTS Y
We should impose conditions on f such that the con-

vexity of the solution is a natural assumption for
both (5) and (6).



Assumptions:
(i) feC>T4)NC(Ty);
(ii) f is symmetric;

(iii) f > 0in Ty and f = 0 on dT;

(iv) f; = c‘?{i >0onl'y fori=1,...,n;
(v) f(t,...,t) = o0 as t — o0;
(vi) f(N,Ap) = 00 as A,y = 0

for any ' € I/ Cc R*L.

These are “natural” assumptions in the following

SEI1se.

Proposition. If f satisfies (i)—(vi), then so does
.

Additional assumptions:

(vii) f is concave;



(viil) >0, fidi > 00 as |\ = oo on
{A 1 < f(A) < po} for any po > py > 0.

Definition. f € F <= f satisfies (i)—(viii).
Examples.

L fO) =12, )\i)l/n (Monge-Ampere).

2. (A nonexample) For any integer 0 < m < n let

S A1y, An) = > A A

If m < n, f=(S,)/™ satisfies all the conditions
except f =0 on 0I'y. So f ¢ F. Convexity of the

solution is not natural if m < n.

3. (Another nonexample) For [ =1,...,n—1

= (501

satisfies all the conditions except (vi) (and (viii) if

l=n—-1). So fr,i &F.

1

If f=fni, then f*=(S,_;)" 7.
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fo=€e(S)Y™ + fuu, e >0,

~ S%}—ocl/n n—1
Sll

[=1,....,n—1, a€(0,1],

and

belong to F. Notice that f. — f,; and fa — fn.1 as
¢ —0and o — 0.

5. If ay,...,a, €10,1], > ap <1, a,, > 0, then

k=1

belongs to F.



Hessian equations.

Theorem 1. Suppose f € F and (), Q* C R" are
uniformly convex with C'°° boundaries. Suppose g €
C>®(Q x R x Q") is positive and

g(x,z,p) > 00 as 2z — oo,

g(r,z,p) -0 as z— —oo,

uniformly for all (x,p) € Q x Q*, and g is convex

with respect to Du. Then the problem
F(D?*u) = g(x,u,Du) in Q,
Du(2) = QF.

has a convex solution v € C>*(Q2). If g, > 0, the

solution is unique in the class of convex functions.

Theorem 2. Let Q, Q* be as above and g € C*°(Qx
R) positive and satisfying

g.>0 on QxR

and
g(r,z) > 00 as z— oo,

g(r,z) =0 as z— —oo,
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uniformly for x € Q). Then for [ =1,...,n — 1, the

problem
Fpilul =g(x,u) in £,

Du(Q)) = QF,

has a convex solution v € C>*(Q2). If g, > 0, the

solution is unique in the class of convex functions.

S, \ ™
Foi<— fn1= <§z>

Theorem 3. Let (), * be as above and assume

that g € C°(Rx ) ) is a positive function satisfying
g. >0 onR xQF,

g(z,p) > o0 as z— oo,

g(z,p) -0 as z— —oo,

uniformly for p € Q*. Then for k =1,...,n — 1, the

problem




has a convex solution u € C®(Q). If g, > 0, the

solution is unique in the class of convex functions.

E), < (Sp) Yk

Curvature equations. We need an extra technical

assumption:

(ix) > fi(N)N > e, p2) > 0

in {A:p < f(A) < po}

for any po > p1 > 0 (e.g., f is homogeneous).

Theorem 4. Suppose that f € F satisfies (ix), €2,
)* are uniformly convex domains in R™ with C°°
boundaries, and g € C*°(Q2 x R) is positive and sat-

isfies
g(r,z) > 00 as z— oo,

g(r,z) =0 as z— —oo,
uniformly for all x € §). Then the problem
F(Du,D?*u) = g(z,u) in £,
Du(2) = QF,
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has a convex solution u € C*°(§). If g, > 0, the

solution is unique in the class of convex functions.

Sketch of proofs.
1. Reformulate Du(€2) = Q* as
(7) h(Du) =0 on 0f2

where h € C°°(R") is a uniformly concave defining

function for €*:

Q*={peR":h(p) >0}, |Dh|=1 on ON.

2. Use continuity method to reduce to a priori esti-
mates in C%%(Q).

3. Degenerate obliqueness: If u € C?(Q) is uniformly

convex, then

X := hp(Du) - v = \/uijV@'Vj ugivpy; 2 0,

where v, v* are the inner unit normal vector fields
to 09, 00Q". The boundary condition is not a priori
strictly oblique.
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4. C° estimate: Use assumptions on ¢ and degener-

ate obliqueness.

5. C! estimate: Immediate from the boundary con-

dition.

6. Once the second derivatives are bounded, global
C?% estimates follow from strictly oblique, uniformly
elliptic theory [Lieberman & Trudinger, Evans, Krylov].

So only the second derivatives need to be estimated.

7. Strict obliqueness: Suppose x|sq has its minimum

at xo € 0¥). Rotate coordinates so that v(zg) = e,.
Then

(8) hp. Dot =0 at  x
for a=1,...,n—1,
(9) hp, Dinu >0 at .

Let v = x + Ah(Du) where A is a positive constant
to be chosen. Then v | has its minimum at xg,

so Dyv(xg) = 0 for « = 1,...,n — 1, which can be
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written as

(10)
hp, pr Diat 4 hp, Dovi + Ahp, Diou =0 at  xg

for a=1,...,n—1.

We claim that
(11) D,v(xg) > —C(A).

This can be rewritten as
hp,pi Dints + hp, Dy Vg

(12)
+ Ahy,, Dipu > —C at xp.

Assuming this, multiply (10) by h,_ and sum over «
from 1 to n — 1, and add this to h,, times (12), to
get

ADkluhpk hpz

—Chy,, — (Devi)hp, hp, — by hp,,p Diiu

= —Chyp, — (Devi)hp, hp, — hp, hp,p, Dinu
Z —th (Dkyl)

1V

pz

In the last two lines we have used (8) and (9), to-
gether with —h,, , > 0. If x(x9) = h,, is small, we
get

(13) Dyuviv| = Dguhy, hy, > c.
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To prove (11) compute differential inequality for v

and use a barrier construction.

To prove the dual estimate
u vy > e, [u] = [D%u] ™
use same argument applied to equation for u*.

8. Second derivative bounds.

(i) Let B = h,(Du). Differentiate boundary condi-

tion in any tangential direction 7 to get
(14) D;gu=0 on 0f)

for any tangential vectorfield 7 on 0.

(ii) Compute a differential inequality for H = h(Du):
LH = F;;D;;H — g, D;H
= Gz, p, + 920p, Diu+ Fij DiguD jiuhy, p,
> —(C(e) +eM)T

for any € > 0, where T = > F}; and M = supg, | D?ul.

Since H = 0 on 0f2, a barrier argument implies
D,H < C(e)+eM on 0
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for any € > 0. Combining this with (14) we get
(15) 0 < Dgsu < C(e)+eM on 0

for any ¢ > 0.

(iii) Assume that the maximal tangential second deriva-
tive of u over 02 occurs at 0 € 0f) in the tangential
direction e;. At any boundary point we may write
any direction e; in terms of a tangential component

7(e1) and a component in the direction of 3, namely

V-e

61:’7’(61)—|— BVB
where
V- €
’7'(61):61—(]/-61)1/— ﬁ:BT
and
Bl =B—(8-v)
For 7 = 7(e1) we have
21/1 %
D = D;; D, D
11U u—l_ﬂ-l/ Bu—l_(ﬂ-l/)Z BpU
< 7[2D11u(0) 4 (C(€) + eM)vy
211 B,
S {1 + CV% — Blﬁyl }Dllu(O)

+ (C(e) + eM)v? on 05
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Therefore, for any constant A > 0
Diiu 2v1 81

w = + — Ah(Du
Dllu(O) 6 -V ( )
satisfies
C'e) + EM} 5
w<l4+C+ vy on Of)
- { D11u(0) !

<14+C(e)|2'|* on 092 mnear 0.

Here we use that for small € > 0

M = sup |D?*u| < C(€) + CD11u(0).
Q

Next we compute
Fz-jD@-jw — gplD,,,w 2 —C(C(E) + EM)T in

for any € > 0. A barrier argument implies Dgw(0) <
C'(€) + eM, which simplifies to

DllQU(O) S (C(G) + 6M)D11U(O)

for all sufficiently small € > O.

Finally, tangentially differentiate the boundary con-

dition twice in the e; direction at 0, to get
Diigu + hy,p, DikuDyu+ k1 Dygu =0 at 0,
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where x; > 0 is the normal curvature of 9€2 at 0 in

the direction e;. Then
—hp.p DiguDyu < (Ce) +eM)Dyu at 0.
Since h is uniformly concave,
D11u(0) < C(€) + eM.

The full second derivative bound now follows by fi-
nally fixing € > 0 sufficiently small and using that M
is controlled by Di1u(0): for small € > 0

M = sup|D*u| < C(e) + CD11u(0).
Q

Remarks (i) Modifications in some parts of the ar-

gument are needed to get Theorems 2 and 3.

(ii) For the curvature case the argument is more com-
plicated. There is less symmetry in the problem than
in the Hessian case. For the second derivative esti-

mates

Diju —— \/1 -+ |D’UJ‘2 hij

where h;; are the components of the second funda-
mental form in a local orthonormal frame on graph

u.
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