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Let 
 � Rn be a bounded convex domain, f; g smooth

positive functions. If u 2 C2(
) is a uniformly con-

vex solution of

(1) detD2u =
f(x)

g(Du)
in 
;

then Du : 
 ! Rn is a di�eomorphism onto 
� =

Du(
).

Conversely, given bounded convex domains 
;
� in

Rn and smooth positive functions f; g satisfying the

compatibility condition

(2)

Z



f(x)dx =

Z

�

g(y)dy;

is there a convex solution of

(3)
detD2u =

f(x)

g(Du)
in 
;

Du(
) = 
�?
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Monge mass transport problem. Minimize

(4) C(s) =

Z



jx� s(x)j2f(x)dx

among all maps s : 
! 
� which push forward the

measure d� = f(x)dx onto d� = g(y)dy.

� There is a unique weak solution s of the problem

and s = Du for some convex function u solving (3)

in a weak sense [Brenier 1990].

� If 
� is convex, and f; g 2 C0;� are positive, then

u 2 C2;�(
) for any � 2 (0; 1) [Ca�arelli 1992].

� If 
;
� are uniformly convex, @
; @
� 2 C2;� and

f 2 C0;�(
), g 2 C0;�(

�

) are positive, then u 2

C2;�(
) [Ca�arelli 1996; Urbas 1997 (under slightly

stronger regularity assumptions)].

Questions (i) What can be proved for other cost

functions? Existence and uniqueness results for strictly

convex costs have been proved by Gangbo and Mc-

Cann, Ca�arelli. Very little is known about regular-

ity of optimal maps for nonquadratic costs.
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(ii) What can be proved if detD2u is replaced by

f(�1; : : : ; �n)

where �1; : : : ; �n are either:

� the eigenvalues of D2u;

� the principal curvatures of the graph of u, i.e., the

eigenvalues of

Dijup
1 + jDuj2

relative to Æij +DiuDju:

This leads to the boundary value problems

(Hessian)
F (D2u) = g(x; u;Du) in 
;

Du(
) = 
�:

(Curvature)
F (Du;D2u) = g(x; u) in 
;

Du(
) = 
�:
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What are natural conditions to impose on f? If u is

a locally uniformly convex solution of

(5)
F (D2u) = g(x; u;Du) in 
;

Du(
) = 
�;

then the Legendre transform

u�(y) = x � y � u(x); y = Du(x);

is a locally uniformly convex solution of

(6)
1

F ([D2u�]�1)
=

1

g(Du�; y �Du� � u�; y)
in 
�;

Du�(
�) = 
:

So u� satis�es a similar kind of problem with

f�(�1; : : : ; �n) =
1

f(��11 ; : : : ; ��1n )
:

We should impose conditions on f such that the con-

vexity of the solution is a natural assumption for

both (5) and (6).
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Assumptions:

(i) f 2 C1(�+) \ C(�+);

(ii) f is symmetric;

(iii) f > 0 in �+ and f = 0 on @�+;

(iv) fi =
@f

@�i
> 0 on �+ for i = 1; : : : ; n;

(v) f(t; : : : ; t)!1 as t!1;

(vi) f(�0; �n)!1 as �n !1

for any �0 2 �n�1+ � Rn�1.

These are \natural" assumptions in the following

sense.

Proposition. If f satis�es (i)|(vi), then so does

f�.

Additional assumptions:

(vii) f is concave;
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(viii)
P

n

i=1
fi�

2
i
!1 as j�j ! 1 on

f� : �1 � f(�) � �2g for any �2 � �1 > 0.

De�nition. f 2 F () f satis�es (i)|(viii).

Examples.

1. f(�) = (
Q

n

i=1
�i)

1=n
(Monge-Amp�ere).

2. (A nonexample) For any integer 0 < m � n let

Sm(�1; : : : ; �n) =
X

1�i1<���<im�n

�i1 � � ��im :

If m < n, f = (Sm)
1=m satis�es all the conditions

except f = 0 on @�+. So f 62 F . Convexity of the

solution is not natural if m < n.

3. (Another nonexample) For l = 1; : : : ; n� 1

fn;l(�) =

�
Sn(�)

Sl(�)

� 1

n�l

satis�es all the conditions except (vi) (and (viii) if

l = n� 1). So fn;l 62 F .

If f = fn;l, then f� = (Sn�l)
1

n�l .
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4.

f� = �(Sn)
1=n + fn;l; � > 0;

and

~f� =

 
S
1��l=n
n

S1��
l

! 1

n�l

;

l = 1; : : : ; n� 1; � 2 (0; 1];

belong to F . Notice that f� ! fn;l and ~f� ! fn;l as

�! 0 and �! 0.

5. If �1; : : : ; �n 2 [0; 1],
P

�k � 1, �n > 0, then

f̂ =

nY
k=1

S
�k=k

k

belongs to F .
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Hessian equations.

Theorem 1. Suppose f 2 F and 
, 
� � Rn are

uniformly convex with C1 boundaries. Suppose g 2

C1(
�R� 

�

) is positive and

g(x; z; p)!1 as z !1;

g(x; z; p)! 0 as z ! �1;

uniformly for all (x; p) 2 
 � 
�, and g is convex

with respect to Du. Then the problem

F (D2u) = g(x; u;Du) in 
;

Du(
) = 
�:

has a convex solution u 2 C1(
). If gz > 0, the

solution is unique in the class of convex functions.

Theorem 2. Let
; 
� be as above and g 2 C1(
�

R) positive and satisfying

gz � 0 on 
�R

and
g(x; z)!1 as z !1;

g(x; z)! 0 as z ! �1;
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uniformly for x 2 
. Then for l = 1; : : : ; n � 1, the

problem

Fn;l[u] = g(x; u) in 
;

Du(
) = 
�;

has a convex solution u 2 C1(
). If gz > 0, the

solution is unique in the class of convex functions.

Fn;l  ! fn;l =

�
Sn

Sl

� 1

n�l

Theorem 3. Let 
; 
� be as above and assume

that g 2 C1(R�

�

) is a positive function satisfying

gz � 0 on R� 
�,

g(z; p)!1 as z !1;

g(z; p)! 0 as z ! �1;

uniformly for p 2 
�. Then for k = 1; : : : ; n� 1, the

problem

Fk[u] =
1

g(x �Du� u;Du)
in 
;

Du(
) = 
�;
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has a convex solution u 2 C1(
). If gz > 0, the

solution is unique in the class of convex functions.

Fk  ! (Sk)
1=k

Curvature equations. We need an extra technical

assumption:

(ix)
X

fi(�)�i � c(�1; �2) > 0

in f� : �1 � f(�) � �2g

for any �2 � �1 > 0 (e.g., f is homogeneous).

Theorem 4. Suppose that f 2 F satis�es (ix), 
,


� are uniformly convex domains in Rn with C1

boundaries, and g 2 C1(
�R) is positive and sat-

is�es
g(x; z)!1 as z !1;

g(x; z)! 0 as z ! �1;

uniformly for all x 2 
. Then the problem

F (Du;D2u) = g(x; u) in 
;

Du(
) = 
�;
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has a convex solution u 2 C1(
). If gz > 0, the

solution is unique in the class of convex functions.

Sketch of proofs.

1. Reformulate Du(
) = 
� as

(7) h(Du) = 0 on @


where h 2 C1(Rn) is a uniformly concave de�ning

function for 
�:


� = fp 2 Rn : h(p) > 0g; jDhj = 1 on @
:

2. Use continuity method to reduce to a priori esti-

mates in C2;�(
).

3. Degenerate obliqueness: If u 2 C2(
) is uniformly

convex, then

� := hp(Du) � � =

q
uij�i�j ukl�

�

k
��
l
� 0;

where �; �� are the inner unit normal vector �elds

to @
; @
�. The boundary condition is not a priori

strictly oblique.
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4. C0 estimate: Use assumptions on g and degener-

ate obliqueness.

5. C1 estimate: Immediate from the boundary con-

dition.

6. Once the second derivatives are bounded, global

C2;� estimates follow from strictly oblique, uniformly

elliptic theory [Lieberman & Trudinger, Evans, Krylov].

So only the second derivatives need to be estimated.

7. Strict obliqueness: Suppose �j@
 has its minimum

at x0 2 @
. Rotate coordinates so that �(x0) = en.

Then

hpkDk�u = 0 at x0(8)

for � = 1; : : : ; n� 1;

hpkDknu � 0 at x0:(9)

Let v = � + Ah(Du) where A is a positive constant

to be chosen. Then v j@
 has its minimum at x0,

so D�v(x0) = 0 for � = 1; : : : ; n � 1, which can be
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written as

(10)

hpnplDl�u+ hpkD��k +AhpkDk�u = 0 at x0

for � = 1; : : : ; n� 1:

We claim that

(11) Dnv(x0) � �C(A):

This can be rewritten as

(12)
hpnplDlnu+ hpkDn�k

+AhpkDknu � �C at x0:

Assuming this, multiply (10) by hp� and sum over �

from 1 to n � 1, and add this to hpn times (12), to

get

ADkluhpkhpl

� �Chpn � (Dk�l)hpkhpl � hpkhpnplDklu

= �Chpn � (Dk�l)hpkhpl � hpkhpnpnDknu

� �Chpn � (Dk�l)hpkhpl :

In the last two lines we have used (8) and (9), to-

gether with �hpnpn � 0. If �(x0) = hpn is small, we

get

(13) Dklu �
�

k
��
l
= Dkluhpkhpl � c:
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To prove (11) compute di�erential inequality for v

and use a barrier construction.

To prove the dual estimate

uij �i�j � c; [uij ] = [D2u]�1

use same argument applied to equation for u�.

8. Second derivative bounds.

(i) Let � = hp(Du). Di�erentiate boundary condi-

tion in any tangential direction � to get

(14) D��u = 0 on @


for any tangential vector�eld � on @
.

(ii) Compute a di�erential inequality forH = h(Du):

LH = FijDijH � gpiDiH

= gxkhpk + gzhpkDku+ FijDikuDjluhpkpl

� �(C(�) + �M)T

for any � > 0, where T =
P

Fii andM = sup
 jD
2uj.

Since H = 0 on @
, a barrier argument implies

D�H � C(�) + �M on @
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for any � > 0. Combining this with (14) we get

(15) 0 � D��u � C(�) + �M on @


for any � > 0.

(iii) Assume that the maximal tangential second deriva-

tive of u over @
 occurs at 0 2 @
 in the tangential

direction e1. At any boundary point we may write

any direction e1 in terms of a tangential component

�(e1) and a component in the direction of �, namely

e1 = �(e1) +
� � e1

� � �
�

where

�(e1) = e1 � (� � e1)� �
� � e1

� � �
�>

and

�> = � � (� � �)�:

For � = �(e1) we have

D11u = D��u+
2�1

� � �
D��u+

�21
(� � �)2

D��u

� j� j2D11u(0) + (C(�) + �M)�21

�

�
1 + C�21 �

2�1�
>

1

� � �

�
D11u(0)

+ (C(�) + �M)�21 on @
:
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Therefore, for any constant A > 0

w =
D11u

D11u(0)
+
2�1�

>

1

� � �
�Ah(Du)

satis�es

w � 1 +

�
C +

C(�) + �M

D11u(0)

�
�21 on @


� 1 + C(�)jx0j2 on @
 near 0:

Here we use that for small � > 0

M = sup



jD2uj � C(�) + CD11u(0):

Next we compute

FijDijw � gpiDiw � �C(C(�) + �M)T in 


for any � > 0. A barrier argument implies D�w(0) �

C(�) + �M , which simpli�es to

D11�u(0) � (C(�) + �M)D11u(0)

for all suÆciently small � > 0.

Finally, tangentially di�erentiate the boundary con-

dition twice in the e1 direction at 0, to get

D11�u+ hpkplD1kuD1lu+ �1D��u = 0 at 0;
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where �1 > 0 is the normal curvature of @
 at 0 in

the direction e1. Then

�hpkplD1kuD1lu � (C(�) + �M)D11u at 0:

Since h is uniformly concave,

D11u(0) � C(�) + �M:

The full second derivative bound now follows by �-

nally �xing � > 0 suÆciently small and using thatM

is controlled by D11u(0): for small � > 0

M = sup



jD2uj � C(�) + CD11u(0):

Remarks (i) Modi�cations in some parts of the ar-

gument are needed to get Theorems 2 and 3.

(ii) For the curvature case the argument is more com-

plicated. There is less symmetry in the problem than

in the Hessian case. For the second derivative esti-

mates

Diju !
p
1 + jDuj2 hij

where hij are the components of the second funda-

mental form in a local orthonormal frame on graph

u.
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