THE FIELDS INSTITUTE

FOR RESEARCH IN MATHEMATICAL SCIENCES

ABSTRACTS 1.2

MITSUO HOSHINO AND KENJI NISHIDA University of Tsukuba and Shinshu University

A generalization of the Auslander formula

A generalization of the Auslander Formula is provided under the Auslander condition. Let Λ be a left and right Noetherian ring and mod Λ the category of all finitely generated left Λ -modules. Let the grade of a module $M \in \operatorname{mod}\Lambda$; $\operatorname{grade}_{\Lambda}M := \inf\{i : \operatorname{Ext}_{\Lambda}^{i}(M,\Lambda) \neq 0\}$. (Au) For all integers $i \geq 0$ and all $\Lambda^{\operatorname{op}}$ - submodules $N \subset \operatorname{Ext}_{\Lambda}^{i}(M,\Lambda)$, it holds that $\operatorname{grade}_{\Lambda^{\operatorname{op}}}N \geq i$. We assume that all Λ -modules and $\Lambda^{\operatorname{op}}$ -modules satisfy the condition (Au). Let $M \in \operatorname{mod}\Lambda$. Put $M_k := \operatorname{Ext}_{\Lambda^{\operatorname{op}}}^k(\operatorname{Tr}\Omega^{k-1}M,\Lambda)$ for $k \geq 1$ and $M_0 = M$. Theorem Let $g := \operatorname{grade}_{\Lambda}M < \infty$. Then there exists a filtration of Λ -submodules of $M : M_0 = \cdots = M_g \supset \cdots \supset M_k \supset \cdots$ such that i) in case k = g, the following sequence is exact,

$$0 \to M_{g+1} \to M_g \to \operatorname{Ext}\nolimits_{\Lambda^{\operatorname{op}}}^g(\operatorname{Ext}\nolimits_{\Lambda}^g(M,\Lambda),\Lambda) \to \operatorname{Ext}\nolimits_{\Lambda^{\operatorname{op}}}^{g+2}(\operatorname{Tr}\Omega^gM,\Lambda) \to 0,$$

ii) if $\operatorname{Ext}_{\Lambda^{\operatorname{op}}}^k(\operatorname{Ext}_{\Lambda}^k(M,\Lambda),\Lambda) \neq 0$, then $\operatorname{grade}_{\Lambda}M_k = k$, $M_k \neq M_{k+1}$, M_k/M_{k+1} is pure of grade k, iii) if $\operatorname{Ext}_{\Lambda^{\operatorname{op}}}^k(\operatorname{Ext}_{\Lambda}^k(M,\Lambda),\Lambda) = 0$, then $M_k = M_{k+1}$. Moreover, if G- dim ${}_{\Lambda}M = d < \infty$, then iv) $M_{d+1} = 0$ and $M_d = \operatorname{Ext}_{\Lambda^{\operatorname{op}}}^d(\operatorname{Ext}_{\Lambda}^d(M,\Lambda),\Lambda)$.

References

[1] M. Hoshino and K. Nishida, A generalization of the Auslander formula, preprint 2002, http://math.shinshu-u.ac.jp/kenisida/