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Abstract

This is an introduction to the theory of Shimura varieties, or, in other words, to
the arithmetic theory of automorphic functions and holomorphic automorphic forms.
(June 381,2; June 633,4.)
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Introduction

The arithmetic properties of elliptic modular functions and forms were extensively studied

in the 1800s, culminating in the beautiful Kronecker Jugendtraum. Hilbert emphasized
the importance of extending this theory to functions of several variables in the twelfth of

famous problems at the International Congress in 1900. The first tentative steps in this di-
rection were taken by Hilbert himself and his students Blumenthal and Hecke in their study
of what are now called Hilbert (or Hilbert-Blumenthal) modular varieties. As the theory
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of complex functions of several variables matured, other quotients of bounded symmet-
ric domains by arithmetic groups were studied (Siegel, Braun, and others). However, the
modern theory of Shimura varietiesnly really began with the development of the theory

of abelian varieties with complex multiplication by Shimura, Taniyama, and Weil in the
mid-1950s, and with the subsequent proof by Shimura of the existence of canonical mod-
els for certain families of Shimura varieties. In two fundamental articles, Deligne recast
the theory in the language of abstract reductive groups and extended Shimura’s results on
canonical models. Langlands made Shimura varieties a central part of his program, both as
a source of representations of Galois groups and as tests for his conjecture that all motivic
L-functions are automorphic.

These notes are an introduction to the theory of Shimura varieties from the perspective
of Deligne and Langlands. Because of their brevity, | have not been able to include proofs,
although I have tried to explain why statements are true. Headifge&F' should be
understood in this spirit.

Throughout the text, references are usually to the most accessible source for a statement
or proof, not the original source.

Prerequisites

Beyond the mathematics that students usually acquire by the end of their first year of grad-
uate work (a little complex analysis, topology, algebra, differential geometry,...), | assume
some familiarity with algebraic number theory (e.¢1-4, 7 of Milne ANT), algebraic
geometry (e.g.§51-5, 9, 13 of Milne AG), algebraic groups (e.g., Murnaghan 2003), and
elliptic modular curves (e.g¢§1-8 of Milne MF and Milne SC).

Notations and conventions

Unless indicated otherwise, vector spaces are assumed to be finite dimensional and free
Z-modules of finite rank. The dudlom(V, k) of a vector spac&’ is denoted/".

A superscript” (resp. °) denotes a(n identity) connected component relative to a eu-
clidean topology (resp. a Zariski topology). For examplé&; if= GL,, thenG° = G and
G(R)* consists of the matrices witket > 0.
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1 HERMITIAN SYMMETRIC DOMAINS 1

1 Hermitian symmetric domains

In this section, | describe the complex manifolds that play the role in higher dimensions of
the complex upper half plane, or, equivalently, the open unit disk:

Z’_’th
{zeC|S(2)>0t=H1 =~  Di={ze€C||z] <1}

I S
z—1

Review of real manifolds

A manifold M of dimensionn is a Hausdorff topological space that is locally isomorphi@®to
and admits a countable basis of open subsetghakt of M is a homeomorphismp from an open
subsetU of M onto an open subset &f".

Smooth manifolds

| use the terms differentiable, smooth, afief interchangeably. Amooth manifoldis a manifold

M endowed with amooth structurei.e., a shea® ), of R-valued functions such théi/, O,) is
locally isomorphic tdR™ endowed with its sheaf of differentiable functions. A smooth structure on
a manifoldM can be defined by a family,,: U, — R" of charts such that/ = | U, and

a0 5" 0p(Ua NUp) = 9a(Ua NUp)

is smooth for alky, 5.

Let (M, Oyr) be a smooth manifold, and |€ty, , denote the ring of germs of smooth functions
atp. Thetangent spacd;, M atp is theR-vector space of derivations,: O, — R. A smooth
vector fieldon an open subset &f of M is a family X = (X,),cv, X, € T,(M), such that, for
any differentiable functiorf on an open subset &f, p — X f(p) =qt X, f is differentiable. A
smoothr-tensor fieldon an open subsét of M is a family f = (f,),ens Of multilinear mappings
fp: Tp,M x - xT,M — R (r copies ofl},M) such that, for any smooth vector fields, ..., X,
on an open subset &f, p — f,(X1,...,X,) is a smooth function. A-tensor field is also called a
covector field A smooth(r, s)-tensor fieldis a family f,: (7, M)" x (T,M)"* — R satisfying the
obvious condition. Note that a smodth 1)-field can be identified with a family of endomorphisms
fp: TyM — T, M such that, for any smooth vector fiel, p — f,(X,) is also smooth.

A riemannian metric on)M is a2-tensor fieldg such that, for alp € M, g, is symmetric and
positive definite.

Real-analytic manifolds

To define aeal-analytic manifold simply replace “smooth” with “real-analytic” in the above defi-
nition. The elementary theory of real-analytic manifolds is very similar to that of smooth manifolds
except that one must remember that there are many fewer real-analytic functions. For example, not
every germ of a real-analytic function is represented by a real-analytic function on the whidle of
Thus, one must state things locally, as we did in the preceding subsubsection.
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Review of hermitian forms

To give a complex vector spadé amounts to giving a real vector spaketogether with an endo-
morphismJ: V — V suchJ? = —1. Thenz = a + bi acts asu + bJ. A hermitian form on
(V,J)isamapping |): V x V — C that is linear in the first variable, semilinear in the second,
and satisfiegv|u) = (u|v). When we write

(u’U) - (P(u7 'U) - zz/;(u, U)v (p(u, U)v 1/1(% U) €R, (1)

theny andvy areR-bilinear, and

@ is symmetric o(Ju, Jv) = ¢(u,v), (2)
1 is skew-symmetric (Ju, Jv) = Y(u,v), 3)
?/)(U, v) = _SD(U’ JU)’ @(uv v) = 1/’(“» ‘]v)' (4)

As (ulu) = ¢(u,u), (|) is positive definite if and only ifp is positive definite. Conversely, i
satisfies'?) (resp.v satisfies'8)), then the formulasd) and (1) define a hermitian form:

(ulv) = @(u,v) +ip(u, Jv) (resp.(ulv) = ¢(u, Jv) — ity (u,v)) (5)

Review of real algebraic groups

PropPosITIONL.1 A real Lie group is algebraic if and only if it has a faithful representation on a
finite dimensional vector space.

Hence, adjoint Lie groups (i.e., centreless groups) are algebraic, because the adjoint representa-
tion Ad: G — LieG is faithful.

Let G be a connected algebraic group o¥erand letg — g denote complex conjugation
on G(C). An involution 6 of G defines a real forn@(?), which is characterized by the fact that
complex multiplication onG¥)(C) = G(C) is g — 6(g). A Cartan involution is an involution
such thatG(®) (R) is compact, i.e.§ is a Cartan iffg € G(C) | g = 6(g)} is compact.

EXAMPLE 1.2. LetG = SLy, and letd = ad ( % §). For(2 %) € SLy(C), we have
_ d —¢
)R- = (5 7).

Thus,SLg)) (R) is the set of matrice§® %) in SLy(C) such thats = d, ¢ = —b, i.e., the complex
matrices( s g) with |a|? + |b|> = 1. This is certainly compact, and ds a Cartan involution for
SLs.

THEOREM1.3. There exists a Cartan involution if and onlyGfis reductive, in which case any two
are conjugate by an elementG{R).

ExAMPLE 1.4 (a) Let G = GL(V) with V a real vector space. The choice of a basis for
V determines a transpose operaddr — M?, and M — (M?')~! is obviously a Cartan
involution. The theorem says that all Cartan involutions arise this way.

(b) Let G be a connected algebraic group o#rand letG — GL(V') be a faithful representa-
tion of G. Thend is reductive if and only if7 is stable undeg — ¢* for a suitable choice of
a basis forl/, in which case the restriction gf — (gt)_l is a Cartan involution; all Cartan
involutions of G arise in this way (Satake 1980, | 4.4).
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(c) If Gis simple, therG is either simple or else it decomposes as the product of two conjugate
groupsGy x Gs. Inthe second cas€; ~ Resc g G1 (restriction of scalars, see Springer
1998, 11.4.16) and/(R) ~ G1(C), which is not compad. Therefore, ifG simple and
compact, therd7¢ is also simple.

PROPOSITIONL.5. LetG be a connected algebraic group ovir If G(R) is compact, then every
real representation off — GL(V) carries aG-invariant positive definite symmetric bilinear form;
conversely, if one faithful real representation@®farries such a form, the@'(R) is compact.

PROOF Letp: G — GL(V) be a real representation 6f. If G(R) is compact, then its imagd
in GL(V') is compact. Letlh be the Haar measure d#, and choose a positive definite symmetric
bilinear form(|) onV. Then the form

(u]v)’z[{(hu]hv)dh

is G-invariant, and it is still symmetric, positive, and bilinear. For the converse, choose an orthonor-
mal basis for the form. The&'(R) becomes identified with the set of real matricésuch that
At A = I, which is closed and bounded. O

REMARK 1.6. The proposition can be restated for complex representations(Rf is compact
then every finite-dimensional complex representatioid-afarries aG-invariant positive definite
Hermitian form; conversely, if some faithful real representatiotafarries aG-invariant positive
definite Hermitian form, the?(R) is compact.

Let G be a real algebraic group, and tétbe an element of/(R) whose square is central. A
C-polarizationon a representatioli of G is a G-invariant bilinear formy such thatp(u, Cv) is
symmetric and positive definite.

PrROPOSITIONL.7. If adC is a Cartan involution of7, then every real representation Gfcarries
a C-polarization; conversely, if one faithful representatior®€arries aC-polarization, theradC
is a Cartan involution.

PROOF. Let G — GL(V) be representation @, and lety be aG-invariant bilinear form ori/.
Define
¢ V(C)xV(C) = C, ¢(u,v) = pc(u,v).

Theny' is sesquilinear, and for afl € G(C),
¢'(gu, gv) = pclgu, gv) = pc(u, ) = ¢'(u,v), u,v € V(C).
On replacing with Cv, we find that
¢ (gu, CC™1gCv) = ¢'(u,Cv), g€ G(C), u,ve V(CT). (6)

Let oo (u,v) = ¢(u, Cv) and lety,, be the associated sesquilinear formiofC). Then 6) states
thatl, is G (C)-invariant, where) = ad(C), and sop¢ is G (R)-invariant. Therefore, if the
representation is faithful angc is positive definite, the(?) (R) is compactL.5).

Conversely, ifG(?) is compact, then every representat@®n— GL(V) carries aG(?)-invariant
positive definite form) (1.5), and the above argument can be run backwards to showthat —
Y(u, C~1v) is aC-polarization ofV/. O

2If G4 # 1, it contains a toru§” # 1, andT(C) ~ C*" for somer > 1.
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Complex manifolds

A complex manifoldis a manifold M endowed with acomplex structure i.e., a sheaf
O of C-valued functions such tha@f\/, O,,) is locally isomorphic taC™ with its sheaf

of complex-analytic functions. A complex structure on a manitblccan be defined by a
family ¢, : U, — C" of charts such that/ = | JU,, and

Pa © SDEI: ©5(Ua NUg) — @a(Usa NUp)

is complex-analytic for alty, 3. Such a family also defines a smooth structurel\drand

a real-analytic structure. Thus, a complex manifdldhas an underlying smooth struc-
ture O%; and an underlying real-analytic structu®g}. A tangent vectorat a pointp of a
complex manifold is a derivatio®,,,, — C. The tangent spacds M (M as a complex
manifold) andZ}, /> (M as a smooth manifold) can be identified. Thus, a complex struc-
ture on a smooth (or real-analytic) manifald provides each tangent spa€g\V/ with a
complex structure. Explicitly, complex local coordinates. . ., 2™ at a pointp of M de-

fine real local coordinates', . . ., ,y N T with 2l =a" 4y The real and complex
tangent spaces have basdés, . 321, ol 8y and a‘zl, . respectively. Under

the natural identification of the two spac%%; dmr +1 ayr-

Recall that a smooth functiofi: C — C is holomorphic if and only if it satisfies the
Cauchy-Riemann condition. This last condition has a geometric interpretation: it requires
thatdf,: T,C — Ty, C be C-linear for allp € C.* This allows us to define a smooth
function f: C" — C to be holomorphic if the mapsdf.: T.C" — Ty)C areC-linear
for all z. Just as in the one-variable case, a smooth function is holomorphlc if and only
if it is complex-analytic (Voisin 2002, 1.17). From now on, | shall say holomorphic for
complex-analytic, and reserve analytic to mean real-analytic.

An almost-complex structur@n a smooth (resp. analytic) manifold is a smooth
(resp. analytic) tensor field),)perr, Jp: T,M — T,M, such that/; = —1 for all p.

A complex structure on smooth manifold endows it with an almost-complex structure. In
terms of complex local coordinates, . . ., 2™ in a neighbourhood of a poipton a complex
manifold and the corresponding real local coordinates. . y", J, acts by

0 0 0 0

ok oyk’ Oy T ok (7)

The functor from complex manifolds to almost-complex manifolds is fully faithful, i.e.,
a smooth mapy: M — N of complex manifolds such that the mags, are C-linear
is holomorphic. It is known that an almost-complex structure on a smooth (or complex)
manifold arises from a complex structure if and only if

Y 82”

[JX,JY] = [X, Y]+ J[JX,Y] + J[X, JY] (8)

SLetz = x + iy, so thatdz = dx + idy. Let f = u + iv be a smooth functio€ — C. Then

Ju Ju v v
df = <dac + de) <axd1‘ + ady) ,

which equalga + bi)dz ifand only ifa = 9% = J¢ andb = §2 = — Gt Thus,(df), is C-linear if and only

Zl)

if f satisfies the Cauchy-Riemann equa’uor@a’n which cas€df), ( L (p) + 192 (p))(d2)y.
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(see Voisin 2002, 2.2.3, for the analytic case). A more elementary condition is that an
almost complex structuré on a smooth manifold/ covered by local coordinate neigh-
bourhoods on whicly takes the form{) arises from a complex structure (because the
condition forces the coordinate changes to be holomorphic).

From these statements, we see that a complex manifold can be regarded as a smooth
manifold endowed with complex structures on its tangent spaces varying smoothly and
satisfying B8). Moreover, a hermitian metric ol can be regarded as a riemannian metric
gsuchthay,(JX,JY) =g,(X,Y)forallp e MandX,Y € T,M.

Hermitian symmetric spaces

DEFINITION 1.8.  (a) A manifold M (smooth, riemannian, complex, ...) ®moge-
neousif for any pair of points(py, p») of M, there exists an automorphismof M
such thatx(p;) = po; in other words, the grouput (M) acts transitively on/.

(b) A symmetry at a poinp of a manifold} is an involutions,: M — M havingp as
an isolated fixed point.

(c) A manifold issymmetricif it is homogeneous and admits a symmetry at one (hence
every) point.

AsIDE 1.9. A riemannian manifold M, ¢) that admits a symmetry at each point is homo-
geneous, and hence symmetric. The symmetatp acts as-1 on7),M (seel.15below).
Because, is an isometry, it maps a poitit on a geodesig throughz to the point?’ # P

on~ equidistant frome.

DEFINITION 1.10 A hermitian symmetric spacis a symmetric hermitian manifold (equiv-
alently, a symmetric riemannian almost complex manifgld, g) satifying 8) and such

EXAMPLE 1.11 (&) Let H, be the complex upper half plane. Th&h,(R) acts onM

by (¢4)2 = &, Foranyz = = +iy € M, z = (\{)g”ffg)z and soM, is

homogeneous. The isomorphism— —1/z is a symmetry at € M, and soM is
symmetric. The metridzdy/y?, which is invariant under the action &fol(H) =
PSL,(R), has the hermitian propert@)

(b) The projective lineP!(C) = {sphere} is a hermitian symmetric space. The group
of rotations is transitive, and reflection along a geodesic (great circle) is a symmetry.
The restriction to the sphere of the euclidean metriRémjives a hermitian metric
onP!(C).

(c) The complex line (planef is a hermitian symmetric space, as is any quotiént
of C by a lattice. The group of translations is transitive, aneé> —z is a symmetry
at(0. The euclidean metric is hermitian.

Curvature. Recall that, for a plane curve, the curvature at a ppistl /r wherer is the
radius of the circle that best approximates the curye &br a space surface, the principal
curvatures at a point are the maximum and minimum of the signed curvatures of the
curves obtained by cutting the surface with a plane through the norma(thé sign is
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positive or negative according as the curve bends towards the normal or away). Although
the principal curvatures depend on the embedding Ritotheir product (thesectional

or Gauss, curvatureat p) does not (Gauss’s Theorema Egregium) and is well-defined for
any riemannian surface. More generally, for a pgimin any riemanian manifold/, one

can define thesectional curvatureK (p, E') of the submanifold cut out by the geodesics
tangent to &-dimensional subspadg of 7, . Intuitively, positive curvature means that

the geodesics through a point converge, and negative curvature means that they diverge.
The geodesics in the upper half plane are the half-lines and semicircles orthogonal to the
real axis. Clearly, they diverge — in fact, this is Poireé&@mous model of noneuclidean
geometry in which given a “line” and a point not on it, there are more than one “lines”
through the point not meeting the first. More prosaically, one can compute that the sectional
curvature is—1. The Gauss curvature & (C) is positive, and that of /A is zero.

The three types of hermitian symmetric spaces

Recall that the groufs(//, g) of isometries of riemannian manifold/, g) is a Lie group

for the compact-open topology (Theorem of Steenrod and Myers; for the proof, Kobayashi
1972, 11.1). The group of automorphisms of hermitian symmetric space is a closed sub-
group of the isometries of the underlying riemannian manifold, and hence is a Lie group.
Every symmetric riemannian manifold, hence every hermitian symmetric space is com-
plete.

Name Example| simply connected curvature| Aut(X)
noncompact type H; yes negative | adjoint, noncompact
compact type PH(C) yes positive | adjoint, compact
Euclidean C/A not necessarily | zero

An adjoint group is a semisimple algebraic group with trivial centre. Every hermitian
symmetric space is a produst’ x X~ x X+ with X° Euclidean, X~ of noncompact type,
and X" of compact type. See Helgason 1978 or Wolf 1984.

DEFINITION 1.12 A hermitian symmetric domains a hermitian symmetric space of non-
compact type.

EXAMPLE 1.13(SIEGEL UPPER HALF SPACE. TheSiegel upper half space{, of degree
g consists of the symmetric complexx g matrices with positive definite imaginary part,
i.e.,

Hy={X+iY € M,(C)| X =X' Y >0}

Note that the mag = (z;;) — (z;;):>; identifiesH, with an open subset @9 +1/2, Let
Sp,, (R) be the group fixing the skew-symmetric fodn;_, x5 — > 7,y Then

o (m_f (A B\ AC=CA  AD-C'B=I
P®)=\¢c p ) pa-BC=1 BD=DB ’

andSp,, (R) acts transitively ort, by

< é g >Z: (AZ + B)(CZ + D).
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The element/ = (IUJ ’019> acts as an involution ok, and has], as its only fixed point.

Example: Bounded symmetric domains.

A domain inC" is a nonempty open connected subset. It is symmetric if it is symmetric
as a complex manifold. For examplH, is a symmetric domain, an®, is a bounded
symmetric domain.

PROPOSITION1.14 Every bounded domain has canonical hermitian metric (called the
Bergman(n) metric). Moreover, this metric has negative curvature.

PROOF. Initially, let D be any domain it©”. Then the set of square-integrable measurable
functionsf: D — C forms a complete separable Hilbert space with inner progtiet) =

[, fgdv. Let (e;);c; be an orthonormal basis f@*(D), and setk'(z) = Y e;(2) - €;(2).
Then K(z) is a real analytic function o, independent of the choice of basis. i

is bounded, then all polynomial functions d@n are square-integrable, and so certainly
K(z) > 0forall . Hencelog(K(z)) is real analytic and the equations

i 7=j 0’
h = Zh”dz de7 hzj<2’) = WK(Z)’
define a hermitian metric o — see Krantz 1992 or Helgason 1978, VIl 3. ]

The Bergman metric, being truly canonical, is invariant under the action of automor-
phisms of D. Hence, a bounded symmetric domain is a hermitian symmetric domain. In
the tablell below, we list some examples. Conversely, Harish-Chandra has shown that ev-
ery hermitian symmetric domain can be embedded into sGfnas a bounded symmetric
domain. In particular, it has a canonical (Bergman) hermitian metric.

The homomorphismu,: Uy — Hol(D)

Initially, let (M, g) be a riemannian manifold such that, for gl M, there is a symmetry
atp.

PROPOSITION1.15 A symmetry, atp acts as—1 onT,M.

PROOF. Because = 1, (ds,)* = 1, and sals, acts semisimply off}, M/ with eigenvalues
+1. Supposet-1 occurs, and lefX be a tangent vector with eigenvectei. There is a
unique geodesig: I — M with

7(0) = p,4(t) = X. (9)
Becauses, is an isometrys, o v is also a geodesic, and it satisfi®}. (Therefore,
v = s, oy andp is not an isolated fixed point af,. [

By a canonical tensoron (M, g) | mean any tensor canonically derived frgmand
hence fixed by any isometry @f\/, g). For example, the riemannian connecti®nis
canonical.
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PROPOSITION1.16 On ()M, g) every canonicat-tensor withr odd is zero. In particular,
parallel translation of2-dimensional subspaces does not change the sectional curvature.

PrROOE Lett be a canonicat-tensor. Then

r 115 r
ty =tpo(dsy)" = (=1)"1y,

and sot = 0 if r is odd. For the second statement, one only has to observe that the

derivative relative to a tangent vector of the plane spanned by a pair of tangent vectors is a

3-tensor. [

PROPOSITION1.17. Let (M, g) and (M’, ¢") be riemannian manifolds in which paral-

lel translation of2-dimensional subspaces does not change the sectional curvature. Let
a: T,M — T,M' be a linear isometry such thak'(p, £) = K(p/,aFE) for every2-
dimensional subspadg C T, M. Thenexp,(X) — exp, (aX) is an isometry of a normal
neighbourhood op onto a normal neighbourhood of.

PrRooOF. This follows from comparing the expansions of the riemann metrics in terms of
normal geodesic coordinates. See Wolf 1984, 2.3.6. m

REMARK 1.18 Ifin (1.17) M andM' are complete and simply connected, thep,(X) —
exp, (aX) extends to an isometry aff — M.

THEOREM 1.19. Let D be a hermitian symmetric space, and {ét= Aut(D). For each
p € M, there exists a unique homomorphisp U; — G such thatu,(z) acts onl,,M as
multiplication by:z.

PROOF. Eachz with |z| = 1 defines an automorphism ¢f, D, h,,), and one checks that
it preserves sectional curvatures. Accordingttd € 1.17 1.18), there exists an isometry
uy(2): D — D such thatdu,(z), is multiplication byz. It is holomorphic because it is
C-linear on the tangent spaces. [

ExAamMPLE 1.20. For H; the upper half plane angl = ¢, let h,: C* — SLy(R) be the
homomorphism: = a + ib — (% ¥). Thenh,(z) acts onl,H; as multiplication by: /=
(becauses (2|, = %). Note thath,(—1) = 1. Forz € U;, choose a square
root /z, and setu,(z) = h,(v/z) mod =+ I. Thenu, is a well-defined homomorphism
U; — PSLy(R), anddu,(z), = z.

Classification of hermitian symmetric domains in terms of real groups

A representatiop: U; — GL(V) of U; on a complex vector spadé decomposes it into
adirect suml/ = @V"™ whereV" = {v € V | p(z)v = 2"v}. If V™ #£ 0, we say that the
character™ occurs inV.

Let p: Uy — GL(V) be a representation @f; on a real vector space. H' occurs
in the representation df; on V(C), so also does™", andV (C)™™ = V(C)" (complex
conjugate) (otherwise the action pfz) on V(C) wouldn't preservd’). On applying this
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with n = 0, we see that’(C) is stable under complex conjugation, and so is defined over
R: V(C)? = V°(C), someV? C V. The natural map

V/V? = V(C)/ @0 V(C)" = @50V (C)" (10)
is an isomorphism, and therefore makéd/° into aC-vector space.

THEOREM1.21 The homomorphism,: U; — G inl1.19has the following properties:
(@) only the characters, z, z—! occur in the representation éf, on Lie(G)c;
(b) ad(u(—1)) is a Cartan involution.
Conversely, letG, u) be a pair satisfying (a,b) with(—1) # 1. There exists a pointed
hermitian symmetric domaifD, p) on whichG(R) acts smoothly and(z) acts onZ,,(D)
as multiplication by:; moreover, D, p) is uniquely determined up to a unique isomorphism
by these conditions.

PROOF. Let L = Lie(G). One checks that/L" = T,,D. Moreover, the composite of this
with @, L(C)" = L/L" is compatible with the action df,. From this (a) follows, and
(b) is a (nonobvious) application of.(7).

For the converse, one lef3 be the set of7(R)"-conjugates of; (cf. §2 below). [

Thus, there is a one-to-one correspondence between isomorphism classes of pointed
hermitian symmetric domains and pairs, u) consisting of a real adjoint Lie group and a
nontrivial homomorphism: U; — G(R) satisfying (a), (b).

EXAMPLE 1.22 Letu: U; — PSLy(R) be asinlt.20). Thenu(—1) = ( % §) and we saw
in1.2thatadu(—1) is a Cartan involution ofL,, hence als®SL,.

Classification of hermitian symmetric domains in terms of Dynkin dia-
grams

Let H be a simple adjoint group ov&, and letu be a homomorphisiy; — H satisfying (a) and
(b) of Theorenil.21. Becauséd has a compact inner forml.Ac) implies thatH¢ is simple. From
u We get a cocharacter = uc of He, which satisfies the following condition:

in the action ofG,, on Lie(H¢) defined byad o x, only the characters™*, 1, z occur.  (11)

PROPOSITION1.23 The map H,u) — (Hc, uc) defines bijection between the sets of isomorphism
classes of pairs consisting of

(a) asimple adjoint group oveR and a conjugacy class af: U; — H satisfyingll.21a,b), and

(b) a simple adjoint group ovef and a conjugacy class of cocharacters satisfyihg) (

PROOF. Let (G, ) be as in (b), and lej — g denote complex conjugation @#(C) relative the
unique compact real form @¥ (seel.3). There is real formf of G such that complex conjugation
onH(C)=G(C)isg— pu(—1)-g-u(—1), andu =¢ p|U; takes values it (R).The pair(H, u)
isasin (a), the mapG&, u) — (H,u)isinverse tad H,u) — (Hc,uc) on isomorphism classes[]

Note that the isomorphism class @F, 1.) depends only on the conjugacy clasg.of
Let G be a simple algebraic group. Choose a maximal torus in GG, and a baséw;);c; for
the roots ofG relative toT'. Recall, that the nodes of the Dynkin diagram(6f, T') are indexed by
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I. Recall also (Bourbaki 1981, VI 1.8) that there is a unique foet » n;a; such that, for any
other rooty “m;«;, n; > m; for all i. An «; (or the associated node) is said todpecialif n; = 1.

Let M be a conjugacy class of nontrivial cocharacter& shatisfying (L1). Because all maximal
tori of G are conjugate) has a representative ik, (7') C X.(G), and because the Weyl group
acts simply transitively on the Weyl chambers (Serre 1987, p34; Humphreys 1972, 10.3) there is a
unique representativefor A/ such thato;, 1) > 0. The conditionL1) is tha (o, u) € {1,0, —1}
for all rootsa. Sincep is nontrivial, not all the valuega, ;1) can be zero, and so this condition
implies that(a;, 1) = 1 for exactly one € I, which must in fact be special (otherwie, ) > 1).
Thus, that theM satisfying (1) are in one-to-one correspondence with the special nodes of the
Dynkin diagram. In conclusion:

THEOREM 1.24. The isomorphism classes of irreducible hermitian symmetric domains are classi-
fied by the special nodes on Dynkin diagrams.

It remains to list these, with the help of the tables in Bourbaki 1981. In the following table, the
special nodes are marked by squares, and the number in parentheses indicates the position of the
special node. The other notations will be explained later.

A, : The special linear groupl.,, ;1 is the subgroup o&L,,,1 of matrices of determinarit

_q_ 2q _pq_ 2p p

P+q P+q ptq P+q p+q n=l1
An(p): % 0 v 1<p<n

a1 fa%) ap Op—1 ap ptqg=n+1

B,,: The special orthogonal grog®)s,, 11 is the subgroup dL,, 11 of matricesA that preserve the
symmetric bilinear formp(x,y) = z1y1 + - - - + Tan+1Y2n+1, I-€., Such thab(Ax, Ay) = ¢(x,y).

1
1 1 1 5

B,(1): O o——=x (n>2)
ai Q2 Qn—1 On

C,: The symplectic groufip,,, is the subgroup of:L,, of matrices preserving the skew-symmetric

formy(x,y) = —z_pyn — - —v_1y1 + T1Y—1 + - + TpY—n.
1 3 n—=1 n
2 2 2 2

Cn(n) : o——=1 (n>3)
aq (e%) Op—1 ap

D,: Same a3, but with2n + 1 replaced by@n.

1 1
D,(1): O
(65} a9
n—2
4
1 1 1 Qp—1
D,(n): x . (n>4)
(%} (%)) Qpn—2 1

4The 1 with this property are sometimes said torb@uscule(cf. Bourbaki 1981, pp226-227).
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D,(n —1): Same ad,,(n) by with a,,_1 anda, interchanged (rotation about the horizontal axis).

Exceptional: There are also groups labelléd, E7, Eg, F5, G4.

Deligne’s formula. The number of isomorphism classes of hermitian symmetric domains at-
tached to a simple adjoint group overC is i — 1 wherejs is the index of connectivity of7 (the
order of the centre of the simply connected covering grou@)ofThis is proved by inspection. The
indices are:

An B, | Cy| Dyn| Es | Er | Eg | Fuy | G
n+112 2 4 3 2 1 1 1

See Bourbaki 1981, Tables pp250-275.

Irreducible hermitian symmetric domains

EC | S | hermitian symmetric domain| dim rank
A |l I | SU(p, q)/S(U(p) x U(q)) pq min(p, q)
D |1 | SO*(2p)/U(p) (p>2) el | 2]
C |m |1 |Sp(p,R)/U(p) et | p
BD | IV I | SO(p,2)*/(SO(p) x SO(2)) | p min(2, p)
Es,7 | VVI omitted.

E.C. (resp. S) = the numbering of E. Cartan. (resp. Siegel).

For a square matrid with real coefficientsA > 0 meansA4 is symmetric and positive definite,
i.e.,zt- Az > 0forall z # 0. For a matrix with complex coefficients, it means thais hermitian
(At = A) and positive definite. Finally3 > A means thaB — A > 0.

U(p, q): The group of matrices iGL(p + ¢, C) leaving invariant the hermitian form

—21Z1 = ZpZp T Zpi1Zpt1 - ZpiqZptg

U(p) = U(0,p): The group ofy € GL,,(C) such thag’ - g = I.

SU(p,q) = U(p,q) N SL(p + ¢, C): The group ofg € U(p, q) with det g = 1.

S(U(p) x U(g)): The group of matrice$? ) with a € U(p), b € U(g), anddet a - detb = 1.
SO*(2p): The group of matrices iO(2p, C) leaving invariant the skew-hermitian form

—Z1Zp+1 t Zp+121 — 222p+2 + Zp2Z2 — - — ZpZ2p + 22pZp-

SO(p, q): The group of matrices ifL(p + ¢, R) leaving invariant the quadratic form

2

2 2 2
Iy = Xyt Tt T

p+q-

SO(p, q)": The identity component 3O (p, q).

SO(p) = SO(0,p) = SO(p,0).

The corresponding bounded symmetric domains and hermitian symmetric domains of compact
type are:
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EC | S | bounded symmetric domain hsd of compact type
AL | {ZeM,,|Z'Z<1,) SU(p + q)/S(U(p) x U(g))
D |1l W | {ZeM,,|Z'Z<1,Z=-2'|S0O@2p)/U(p) (p>2)
cC |m |1 |{ZeM,,|Z'Z2<1,2Z=2% |Sp(p)/Up)

BD | IV | | thez € CP such that SO(p +2)/SO(p) x SO(2)
S laif? < J1+ 2P < 1
Es,7 | VVI omitted.

NoOTES. The ultimate source for hermitian symmetric domains is Helgason 1978; Wolf 1984 is also
very useful. The above account is partly based on Deligne 1973 and Deligne 1979. The two tables
above are based on those in Helgason 1978, p518, and Akhiezer 1990, p204.

2 Hodge structures and their classifying spaces

We describe various objects and the spaces that classify (or parametrize) them. Our goal
is a description of hermitian symmetric domains as classifying spaces for certain special
Hodge structures.

Review of representations

Let G be a reductive group over a fietdof characteristic zero. Let: G — GL(V') be a represen-
tation of G. Thecontragredientor dual p“ of p is the representation @& on V" =4 Hom(V, k)
defined by

(p"(9)- )= fp(g™")-v), geG feV veV.

A representation is said to lself-dualif it is isomorphic to its contragredient.
A r-tensorof V' is a multilinear map

t:Vx---xV —k (r-copiesofl).
Given a representation 6f onV, definegt by
(gt)(v1,...) =t(g  v1,...), g€G, (v1,...)EV x---x V.

Letty, ..., ¢, betensors of/. The action ofGL(V) onV extends to an action o¥i"™*, and we call
the stability group oft, . . ., t,,,) thesubgroup of GL(V) fixing the tensorst;.

THEOREM 2.1 For any faithful self-dual representatiagd — GL (V") of G, there exists a finite set
T of tensors o such thatG is the subgroup o&zL(V) fixing thet € T'.

PrROOF. In Deligne 1982 this is shown fdf' an infinite set of tensors, but clearly, a finite subset
will suffice. O

For example, the symplectic group is the subgrou:af V) fixing a skew symmetric form,

and the special orthogonal group is the subgrou@btV’) fixing a symmetric form and the form

Vx.ox Vo A"V IS,
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Let G be the subgroup d&L(V) fixing ¢1, ..., t,. Then

G(k) = {9 € GL(V) | ti(gun .. gu) = ti(vrs o vvy). i = 1,....m)
Lie(G) = {g € End(V) | >77_ti(v1, ..., gvj, . .vp) =0, i=1,...,m}.

To prove the second equality, recall that the Lie algebra of an algebraic gtasiphe kernel of
G(k[e]) — G(k), e? = 1. ThusLie(G) consists of the endomorphisms: ge of V' such that

tl((l + 95)7)1, (1 + gs)vg, .. ) = t(’Ul, V2, .. )

Expand this, and set = 0.

Flag varieties
The projective spaceP(1)

Let V' be a finite dimensional vector space over a field’he set?(V') of one-dimensional
subspaces i has a natural structure of an algebraic variety. For example, the choice of
an isomorphism’ — k" determines an isomorphisi{l’) — P"~1.

Grassmann varieties

2.2. LetV be a finite dimensional vector space over a fieldnd let) < d < n = dim V.
The setG, (V') of d-dimensional subspaces has a natural structure of an algebraic variety.
In fact, the image of the map

W= N'W: Go(V) — P(\'V) (12)

has closed image (Humphreys 1975, 1.8). This map can be made explicit by fixing a basis
for V. The choice of basis fdi” then determines & x n matrix A(W), and changing the
basis forl/’ multiplies A(1W) on the left by an invertibl@ x d matrix. Thus, the family of

d x d minors of A(W) is well-determined up to multiplication by a nonzero constant, and

so determines a point iB(\*V) = P(d). This is the point associated with'.

2.3 Let.S be a subspace &f of complementary dimension—d, and letG (V) s be the set
of W € G4(V) suchthat?’ NS = {0}. Fixally € G4(V)s, sothatV = W, & S. For any
W € G4(V)g, the projectionV — W, given by this decomposition is an isomorphism,
and solV is the graph of a homorphisi, — S:

w— s <= (w,s) eW.
Conversely, the graph of any homomorphiBrp — S lies inG4(V)s. Thus,
G4(V)s = Hom(Wy, S) = Hom(V/S, S). (13)
End(Wy) Hom(S,Wp)

The decompositiol’ = W& S gives a decompositiofind (V') = (Hom(WO’S) End(S) ) The
isomorphisms13) show that the grou;()Hom(lwms) (1)) acts simply transitively 0i6z;(V)s.
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From (13) we find that the tangent spacedq(V') at W,
Tw,(G4(V)) = Hom(Wy, S) = Hom(Wy, V/Wy). (14)

2.4. BecausésL (V) acts transitively on the set of basesfit acts transitively ord7; (V).
Let P(Wy) € GL(V') be the subgroup stabilizing,: P(Wy) = {g € GL(V) | g(Wy) =
Wo}. Then

g+ gWo: GL(V)/P(Wy) = Ga(V).

For any complement to 17/,

Flag varieties

2.5 Let V be a finite-dimensional vector space overand letd = (di,...,d,) with
0<dy < --<d.<n=dimV. LetGq(V) be the set of flags
F: VoVIo>...oV"D>0 (15)

with V' a subspace of of dimensiond;. The mapF — (V%): Gqa(V) — [[,G4(V)
realizesG4(V') as a closed subsgf,G4, (V), and so it is a projective variety (Humphreys
1978, 1.8). The tangent spacedq (1) at the flagF' consists of compatible families of
homomorphisms?: V¢ — V/V, o' |Vi*! = o1 mod V!, (Harris 1992, 16.3):

> 3 7SS P

(pi\L QPHI\L (16)

> VIV s VIV

Again, GL(V) acts transitively ort74(V'), and so, for any flag,
g+ gFy: GL(V)/P(Fp) = Ga(V)

whereP(Fp) is the subgroup ozL(V) stabilizing F;.

Hodge structures
Hodge decompositions

2.6. For a real vector spadé, complex conjugation off (C) =4 C ®g V' is defined by

Z2RUV=ZR.

*The composité& ;(V)s = Hom(V/S, S) in (13) depends on the choice Bf,. A more precise statement
is thatG4(V)s is an affine space (principal homogeneous spaceliéon(V/S,.S). On the other hand, the
isomorphismilyy, (G4(V)) = Hom(Wy, V/W,) is independent of the choice of the complemgrid WW,.
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An R-basis(e;)1<i<m, for V is also aC-basis forV (C), and) Ja;e; = > aze;. A Hodge de-
composition of weight: of a real vector spac¥ is a decompositioly (C) = @, g—nV??
such thatl/?? is the complex conjugate df”?. An integral (resp. rational, resp. real)
Hodge structureis a freeZ-module of finite rankl” (resp. finite-dimensiondl-vector
space; resp. finite-dimension&tvector space) together with a Hodge decomposition of
V(R). The set of pairgp, q) for which V77 =£ 0 is called thetypeof the Hodge structure.

2.7. Let J be a complex structure on a real vector specg.e., aR-linear map such that
J? = —1), and defind/1? andV?! to be the—i and +: eigenspaces of acting onV (C).
ThenV(C) = V1 ¢ V%! is a Hodge structure of typg, 0), (0,1), and every Hodge
structure of this type arises from a (unique) complex structure.

Morphisms of Hodge structures

2.8 Let(V, (VP2)) and(W, (WP1)) be Hodge structures of weights andn respectively.
A morphism(V, (VP4)) — (W, (WP49)) is alinear magpy: W — V such thatw (W??) C
VP4 for all p,q. Thus,a = 0 if m # n. The vector space (or fréé-module)Hom(V, W)
acquires a Hodge structure with

Hom(V,W)"* = {a € Hom(V(C), W(C)) | a(VP?) C WPt}

Then
Hom((V, (V#9)), (W, (WP?)) = Hom(V, W) N Hom(V, W)*".

For example, a morphism of real Hodge structures of type), (0, 1) is a homomorphism
of real vector space commuting with i.e., that isC-linear 2.7).

The Hodge filtration

2.9. TheHodge filtration associated with a Hodge structure of weighs
F*: - DF’OFMf' o FP=g, V"
Note that

if g=n+1-p

Tq TS __ 7,5 T,5
Fi = @3¢V = B¢V = Br<ngV Br<p-1V"7,

and soV/ (C) is the direct sum of”» and ¥ whenevep + ¢ = n + 1. Conversely, ifF® is
a finite descending filtration df (C) such that

V(C) = F? @ F1whenevep +q¢=n+1, (17)
thenF* defines a Hodge structure of weighby the rulelV»? = [P N [,
2.10 For example, for a Hodge structure of tyge0), (0, 1), the Hodge filtration is
FP=V(C)oF'=VY 2 F?*=0
(and the isomorphisir — V//F° defines the complex structure dhnoted in 2.7)).
211 Let (VP9),.,—, be a Hodge decomposition &f. Since the Hodge filtration deter-

mines the Hodge decompositigh9), ., — F* determines a bijection from the set
of Hodge decomposition8/7%),,, ,—, with dim V?? = dim V¢ onto a subset of a flag

manifold.
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The Weil operator

2.12 DefineC': V(C) — V(C) to act onV/?? as multiplication byi~?. ThenC' commutes
with complex conjugation oV (C): if z € VP4, thenz € V9P, and soCT = i* 1T =
i7-?x. Thus,C is anR-linear mapl’ — V. Note that(i??)? = §2¢-2P+% — (—1)", and so
C? acts asl or —1 according as: is even or odd.

2.13 For example, ifV is of type (1,0), (0,1), thenC coincides with theJ of (2.7).
The functor(V, (V10 V1)) — (V, C) is an equivalence from the category of real Hodge
structures of typé1, 0), (0, 1), to the category of complex vector spaces.

Hodge structures of weight0.

2.14. Let V be a Hodge structure of weight Then V% is invariant under complex
conjugation, and s&%° = V% @ C, whereV® = V% NV, Note that

V% = Ker(V — V(C)/F°). (18)

Hodge tensors

2.15 Let(V, (VP)) be a real Hodge structure of weightLett: V x --- x V — Rbea
multilinear map ¢-tensor forV’). We say that is aHodge tensoiif

Sopi > .qi = te(vPV T b ) = 0. (29)
Note that, for a Hodge tensor

t(CUl,CUQ, .. ) = t(?}hvg, .. )

because, ifc(v]"", vh>% . ..) # 0, thenC multiplies it byz’zqi—zpi =1

ASIDE2.16 Thetensor producbf Hodge structure§/, (V7)) and(W, (W?9)) of weights
m andn is the Hodge structur@” @ W, ((V @ W)P?)) of weightm + n with

(V ® W)qu — @T+r,:p7s+5/:qu,s ® Wr/’S,_

LetR(m) be the unique Hodge structure of weightm onV' = R; thusR(m)~™ ™ = C.
To give a multilinear mag: V x --- x V. — R amounts to giving a homomorphism
t®: V- @V — R, andt is a Hodge tensor if and only if° is a morphism of Hodge
structured/ ® --- ® V. — R(—nr).

Polarizations

2.17. Let ¢ be a bilinear form on a real vector spakke A Hodge structuréV??), . of
weightn on V' is positive fory (and is apolarization of (V, (V?%))) if ¢ is a Hodge
tensor and)c (u, v) =4 ¥ (u, Cv) is symmetric and positive definite. Note that, becatise
is a Hodge tensor

(Cu, Cv) = P(u,v).
Moreover, ¢ is symmetric or skew symmetric according :a9s even or odd, because

P(v,u) = Y(Cv, Cu) = Y(u, C*v) = (=1)"(u,v) (2.12).
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2.18 For example, a polarization of a Hodge structliref type (1,0), (0, 1), is a skew
symmetric formy: V x V' — R such that)(Ju, Jv) = ¥ (u,v) andy(u, Jv) is symmetric
and positive definite.

Hodge structures as representations df

2.19 LetS beC* regarded as a torus ov&s i.e.,S = Spec R[X, Y, T]/((X2+Y?)T —1)
with the obvious group structure. There are homomorphisms

w t

S G Uy S Uy
2z)7 1 R* Ul 2z Cx 2—z[Z Ul.

G

RX T (CX 2 ( (20)

Note thatS(C) ~ C* x C* with complex conjugation acting b, z2) = (z2, z1). We fix
the isomorphisn$c = G,, x G,, so thatS(R) — S(C) is z — (z,%). Then,

G — Sc “>G, Uic Sc Uic
2 (z1,22)— 2 (z1,22)— (21)
CXﬁCXXCX(’ﬁCX CXﬁCXXCX’ﬁCX
Z,2 2122 z,2 Z1/%2
Also, there is a homomorphism
1: G — S, €% 2B, ox ¢, (22)

2.20 LetV be anR-vector space. The charactersSefare the homomorphisnis, z3) —
223, (p,q) € Z. Therefore, to give a homomorphism S¢ — GL(V(C)) is the same as
to give a decomposition

V=gVPi VPI={veV|h(z)v=_z:{2v}.

Note the switch in thep and¢! The homomorphisnt is defined overR if and only if
Vra = Ver all p, q. Therefore, to give a Hodge structure of weightn V' is the same as
to give a homomorphism: S — GL(V') such thath o w(r) = ™. Under our convention,
h(z) acts onVP? aszPz4. A tensor ofV is a Hodge tensor if and only if it is fixed by
h(C*).

2.21 For a Hodge structure of typ@, 0), (0, 1), the isomorphisnV — V(C)/F! makes
V' into a C-vector space, antl(z)v = zwv for this structure (which is the reason for our
convention).

Variations of Hodge structures

2.22 Fix a real vector spac¥, and letS be a connected complex manifold. A family
of Hodge structuregV??),.s on V' parametrized by5 is said to becontinuousif, for
eachp, ¢, the V> vary continuously withs, i.e.,d(p, ¢) = dim V77 is constant, and —
VP4 S — Gapg (V) is continuous. Letl = (..., d(p),...) withd(p) = >_ - d(r,s). A
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continuous family of Hodge structur¢®??), is holomorphicif the Hodge filtrations??
vary holomorphically, i.e.,
s F2: S5 Ga(V)

is holomorphic. The differential op at s is aC-linear map (seel))
dos: TS — Tre(Ga(V)) C @, Hom(FP,V/FP).
If the image ofdy, is contained in
@, Hom(FY, FT~"/FY),
for all s, then the holomorphic family is calledvariation of Hodge structures ory.

Let V be a real vector space, and [Bt= (¢;)o<;<, be a family of tensors with, a
nondegenerate bilinear form én Letd: Z x Z — N be such that

d(p, q) = 0 for almost allp, g;

d(g,p) = d(p, q);
d(p,q) = 0unlesp + ¢ = n.

Let S(d,T') be the set of all Hodge structuréig?<), , on V" such that

— dim VP = d(p, q) for all p, ¢;
— eacht € T is a Hodge tensor fofl/7%), ,;

— 1o is a polarization foV?7),, ..

ThenS(d, T') acquires a topology as a subspacé pf, ) .oGawq (V). LetS(d,T)* be a
connected component 6f(d, T').

THEOREM2.23  (a) IfnonemptyS(d, T')" has a unique structure of a complex manifold
for which (V, (V), ) is a holomorphic family of Hodge structures.
(b) With this complex structure(d, T')* is a hermitian symmetric domain if and only if
(V, (VP7)) is a variation of Hodge structures.
(c) Every irreducible hermitian symmetric domain is of the fa#(a, 7') for a suitable

V.,d,andT.

PROOF. (a) LetS*™ = S(d,T)". Because the Hodge filtration determines the Hodge de-
composition, the map — F*: St 5 G4(V) is injective. LetG be the subgroup of
GL(V) fixing thet € T, and letH, € S™. It can be shown that

StT=GR)" - H,.
The subgroug+(R)} of G(R)* fixing H, is closed, and so

ST =(GR)"/G(R)y) - H, = GR)"/G(R);

o
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is a real analytic manifold. Let = Lie(V). It acts onl/, and we have a diagram

Ty,ST= L/L* —= End(V)/End(V)"

(IB)J/N (18)\L~ (23)

L(C)/F° —= End(V(C))/F" =Ty, G4(V)

Thus, dyy, mapsTy, ST onto a complex subspace &}, Gq4(V'), and it follows thaty
mapsS+ onto a complex submanifold @f4 (V).

(b) Let i, be the homomorphisrft* — GL(V') defined byH, (2.20). Because the
t; are Hodge tensorgy,(S) ¢ G. We havegh,g~' = hy. Thereforeh,(r) € Z(G).
Defineu,: Uy — G2 by u,(2) = h,(/2). LetC = hy(i) = u,(—1). Then the faithful
representatiod: — GL(V) carries aC-polarization, and sadC' is a Cartan involution on
G (hence onG2Y) (1.7). One checks from23) thatw, satisfies (a) of Theore.21if and
only if (V7?) is a variation of Hodge structures. Since

{G*(R)*-conjugacy class of,} < {G(R)"-conjugacy class of,} — S(d,T),

this proves (b).

(c) Given an irreducible hermitian symmetric domdin choose a faithful self-dual
representatiod — GL(V') of the algebraic groupr associated withD (soG is such that
G(R)* = Aut(D)™). Becausé/ is self-dual, there is a nondegenerate bilinear faymon
V fixed by G. Apply Theorem2.1 to find tensorg, ..., t, such that is the subgroup

of GL(V) fiXing to, . .., t.. Leth, be the composits “~3* U; “4 GL(V) with u, as in
(1.19. Then,h, defines a Hodge structure dnfor which thet; are Hodge tensors and
to is a polarization. One can check thatis naturally identified with the component of
S(d,{to,t1,...,t,})T containing this Hodge structure. O

REMARK 2.24 GivenapaiV, (V?9), .. T), defineL to be the sub-Lie-algebra &hd (V)
fixing thet € T', i.e., such that

dot(vr, .o g0, u) = 0.

ThenL has a Hodge structure of weightWe say thatV, (V??),, ., T) is specialif L is of
type(—1,1),(0,0), (1, —1). The familyS(d, T")* containing(V, (V*9), ,, T) is a variation
of Hodge structures if and only {7, T') is special.

ASIDE 2.25. To be added: explain the geometric significance of all this (Hodge, Giriffiths,
Deligne).
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3 Locally symmetric varieties

Quotients of symmetric hermitian domains by discrete groups

Recall that a group' actsfreelyon a setD if yx = x impliesy = 1.

PROPOSITION3.1 Let D be a symmetric hermitian domain, and Iébe a discrete sub-
group of A =g Aut(D)*. If T acts freely onD, thenT'\ D becomes a manifold for the
guotient topology, and it has a unique complex structure for which a fung¢tmman open
subset of/ of I'\ D is holomorphic if and only iff o 7 is holomorphic ont—'U. Herer is
the quotient ma@® — I'\ D.

PROOF. The proof is essentially the same as in the cBse- H;. Both A and D are
locally compact and Hausdorff, there is a countable basis for the topology @amd A acts
continuously and transitively oP. Therefore, for any: € D, the mapa — az: A — D
defines a homeomorphisdy Stab(x) — D (Milne MF, 1.2).

Becausd' is discrete inA, it acts properly discontinuously an (ibid. 2.4). In fact, for
pointsz, y € D notin the samé'-orbit, there exist neighbourhood@sof = andV of  such
thatyU NV = () for all v € T (ibid. 2.5c). ThemmU and=V are disjoint neighbourhoods
of mx andry, and sa"\ D is Hausdorff.

Letz € T\ D, and letr € 7—!(z). Becausé' acts freely onD, there is a neighbourhood
U of z such thatyU is disjoint from U for all v # 1 (ibid. 2.5b). The restriction of
7w to U is a homeomorphisnty — =wU. Evidently, we can choosE to be a coordinate
neighbourhoodU, u) of z, and thennU, uo (w|U)~!) is a coordinate neighbourhood af
One checks easily that the coordinate neighbourhoods obtained in this way are compatible.

O

We write D(I") for I'\ D with its complex structure.

REMARK 3.2 The mapr: D — D(T') realizesD(I") as the quotient oD by I in the
category of complex manifolds, i.er, is holomorphic, and a map: D(I') — M from

D(T") to a complex manifoldV/ is holomorphic ify o 7 is holomorphic. [Proof: Letp

be a map such that o 7 is holomorphic, and lef be a holomorphic function on an open
subset’ of M. Thenf o ¢ is holomorphic becausgo ¢ o 7 is holomorphic. Thusy is

a morphism of ringed spaces, which is what we mean by a holomorphic map of complex
manifolds.]

Subgroups of finite covolume

We shall be interested in quotients Bfonly by “big” discrete subgroupk of Aut(D)*.
This condition is conveniently expressed by saying fhéf) has finite volume. By defini-
tion, D has a riemannian metricand hence a volume element in local coordinates

Q = \/det(gij(z))dz' A... Adx"

Sincey is invariant undet”, so also i?, and therefore passes to the quotiERD. The
condition is that

vol(D(T")) £ /F\D Q < co.
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For example, leD = H; and letl’ = PSLy(Z). Then

1
F={z€eH ||z >1, —§§§R§ }

N

is a fundamental domain far and

1/2 0o
vol(T'\D) / / / dedy / / dxdy / @ < 0.
r\D vaj2J-1/2 vaj2 Y

On the other hand, the quotient &f; by the groupl’ = {(0 ")|n € Z} of translations
z — z +n,n € Z, has infinite volume, as does the quotientafby I' = 1.

ASIDE 3.3. Areal Lie groupG has a left invariant volume element, which is unique up to
a positive constant (cf. Boothby 1975, VI 3.5).l#ticein G is a discrete subgroupsuch
thatI"\ G has finite volume.

Let K be a compact subgroup 6f. There is aG-invariant Borel measure on G/ K
that is finite on compact subgroups, ani$ unique up to a positive constant. Now suppose
G/ K has the structure of a hermitian symmetric dom&inThen the riemannian volume
form on X has the properties af. An application of Fubini’'s theorem shows that, for a
discrete subgroup of GG acting freely onX, I'\ G has finite volume if and only if\ X has
finite volume. Thus, the discrete subgroupef G acting freely onX for whichT'\ X has
finite volume are precisely the lattices@hthat act freely onX (cf. Witte 2001,51).

Arithmetic subgroups

Two subgroupsd and B of a group arcommensurablef A N B has finite index in both
A and B. For example, the infinite cyclic subgroupg andbZ of R are commensurable
if and only ifa/b € Q*. Commensurability is an equivalence relation (obvious, except for
transitivity).

Let G be an algebraic group ov&. ThenG can be realized as a closed subgroup of
GL,, for somen. Then any subgroup af(Q) commensurable witldi/(Q) N GL,(Z) is
is said to bearithmetic. One can show that this definition is independent of the choice
G — GL,.

Let A be a connected real Lie group. A subgrdupf A is arithmeticif there exists an
algebraic grougs over Q and an arithmetic subgroup, of G(Q) such that"y N G(R)*
maps ontd" under a surjective homomorphisf{R)" — A with compact kernel.

PROPOSITION3.4. Letp: G — G’ be a surjective homomorphism of algebraic groups
overQ. If I' ¢ G(Q) is arithmetic, then so also igI") C G'(Q).

PROOF. Borel 1966, 1.2, or Borel 1969, 8°9. O

PrROPOSITION3.5. Let A be a connected real semisimple Lie group. Then an arithmetic
subgroupl” of A is discrete in4 and of finite covolume. Moreover, 4f = Aut(D)" for D

a hermitian symmetric domain, then every torsion-free arithmetic subgrodmofs freely
onD.

Borel, A., 1969, Introduction aux groupes aritatigues, Hermann.
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PROOF. Omit (cf. Witte 2001, 6.10). O

REMARK 3.6. An endomorphismy of a Q-vector spacé’ is said to beneatif its eigen-
values inQ?¥ generate a torsion-free subgroup@¥*. An elementy € G(Q) is neatif
p(g) is neat for one faithful (hence every) representation. A subgroup(@f) is neatif

all its elements are. Every arithmetic subgroug-¢f)) has a neat subgroup of finite index
(Borel 1969, 17.6). Such a subgroup is obviously torsion-free.

REMARK 3.7. There are many nonarithmetic latticesSin, (R). Recall (Riemann mapping
theorem) than every simply connected riemann surface is isomorphic to exactly one of (a)
the riemann sphere, (ld), or (c) H;. The first two are the universal covering spaces of
the complete nonsingular curves of geiuend genud respectively. It follows that every
complete nonsingular curve of gengs> 2 is the quotient of{; by a discrete subgroup

of PGLy(R)™ acting freely orf;. Since there are continuous families of such curves, this
shows that there are uncountably many latticeB @, (R) " (therefore inSLy(R)), but

there only countably many arithmetic subgroups.

REMARK 3.8. The following (Fields medal) theorem of Margulis et al. show thiai is
exceptional in this regard: if7 is not isogenous t8O(1,n) x compact or SU(1,n) x
compact andI’ is irreducible, therd” is arithmetic — see Margulis 1991 (for the proof) or
Witte 2001, 6.21 (for a discussion). A lattifen a connected semisimple groGpwithout
compact factors iseducibleif there exist normal connected subgrougsand H’' in G
suchthatH H' = G, H N H' is discrete, and'/(I' N H) - (I' N H') is finite; otherwise, it is
irreducible. As SL,(R) is isogenous t§0(1, 2), the theorem doesn’t apply to it.

Algebraic varieties versus complex manifolds

For algebraic varieties, | use the conventions of Milne AG. In particular, an algebraic variety
is a ringed space whose points are closed. A morphism of algebraic varieties is called a
regular map

For a nonsingular variety overC, V (C) has a natural structure as a complex manifold.
More precisely:

PROPOSITION3.9. There is a unique functofV, Oy) — (V@ Oyan) from nonsingular
varieties ovelC to complex manifolds with the following properties:
(a) as sets) = V2" and every Zariski open subset is open for the complex topology;
(b) if V = A", thenV2" = C™ with its natural structure as a complex manifold,;
(c) if p: V — U is étale, theny®": V3 — U2 s a local isomorphism.

PROOF. Recall that regular map: V' — U is étale if the maplpp: TpV — TpU is an
isomorphism for allP € V. Note that conditions (b,c) determine the complex-manifold
structure on any variety” that admits arétale map to an open subvariety &f. Since
every nonsingular variety admits an open covering by sa¢Milne AG, 4.31), this shows
that there exists at most one functor satisfying (a,b,c), and suggests how to definé&lt.

Obviously, aregular map: V' — W is determined by?": V2" — 1¥/@" but not every
holomorphic mag/ /2" — W2 is regular. For example, — e¢*: C — C is not regular.
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A complex manifold need not arise from a nonsingular algebraic variety, and when it
does it may arise from more than one. In other words, two nonsingular variéaesi 11/
may be isomorphic as complex manifolds without being isomorphic as varieties.
There two basic reasons why a complex manifold may not arise from an algebraic
variety:
(a) it may have no “nice” compactification, or
(b) it may have too few functions.
One positive result: the functor

{projective nonsingular curves ov€ — {compact riemann surfaces

is an equivalence of categories. Since the proper Zariski closed subsets of algebraic curves
are the finite subsets, we see that the functor

{affine nonsingular curves ové&} — {compact riemann surfacesfinite setg

is also an equivalence. In particular, we see that, if a riemann sutfameses from an
algebraic curve, then any bounded holomorphic functio/aa constant (because it will
extend to a holomorphic function on the compact riemann surface contdining/e can
conclude that#{,; doesn’t arise from an algebraic curve because, for example, the function
Z ZT is bounded, holomorphic, and nonconstant. In fact, this function is an isomor-
phism ontoD; = {z | |z| < 1}. Note thatD, has a canonical compactification, namely,

the closed unit disk, but this makes no sense algebraically (the closed disk has complex
dimensionl, while it boundary has complex dimensioy2; it is not possible to complete

D, to a compact complex manifold by adding a finite number of points).

Recall that, for any full lattice\ in C, the Weierstrasg function and its derivative
embedC/A into P?(C) (as an elliptic curve). For a full lattica in C?, the field of mero-
morphic functions oi©? /A will usually have transcendence degre€, and saC?/A can't
be an algebraic variety. (For an algebraic varigtgf dimensionn overC, the field of ra-
tional functions onl” has transcendence degreeand, if V' is nonsingular, the rational
functions are meromorphic on the complex manifoi¥f.)

A complex manifold (resp. algebraic variety)asojectiveif it is isomorphic to a closed
submanifold (resp. closed subvariety) of projective space. The first truly satisfying theorem
in the subject is the following:

THEOREM 3.10 (CHow AJM 1949). Every projective complex manifold has a unique
structure of a projective algebraic variety, and every holomorphic map of projective com-
plex manifolds is regular for these structures.

PROOE See Shafarevich 1994, VIII, 3.1. O

In other words, the functov’ — V2" is an equivalence of the category of projective
algebraic varieties with the category of projective complex manifolds.

The discussion so far should suggest that the question of algebraicity for a complex
manifold is closely related to the question of a good compactification.
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The theorem of Baily and Borel

THEOREM 3.11 (BAILY-BOREL). Let D(I') = I'\ D be the quotient of a hermitian sym-
metric domain by a torsion-free arithmetic subgraupThenD(I") has a canonical real-
ization as a Zariski-open subset of a projective algebraic variety)*. In particular, it
has a canonical structure as an algebraic variety.

PrROOF. Recall the proof forD = H;. SetH; = H; UP'(Q) (rational points on the real
axis plus the pointoc). ThenI" acts onH] andI"\'H is a compact riemann surface. One
then shows that there enough modular formstonto embedl™\’H] in some projective
space, and'\'H; is a Zariski-open subset af\H; because it omits only finitely many
points. In outline, the proof in the general case is similar, bumigh harder (Baily &
Borel 1966). O

REMARK 3.12 (a) The varietyD(I")* is very singular. The bounda®(I")* ~. D(I") has
codimensior> 2 (provideddim D(I") > 2, of course).

(b) WhenD(I") is compact, the theorem follows from the Kodaira embedding theorem
(Wells 1980). Nadel and Tsuiji (J Diffl Geom, 1988, 503-512, Theorem 3.1) extended this
to D(I") with boundary of dimensiof, and Mok, N., and Zhong, Jia Qing, (Compactifying
complete Kahler-Einstein manifolds of finite topological type and bounded curvature. Ann.
of Math. (2) 129 (1989), no. 3, 427-470) give an alternative prove the Baily-Borel theorem,
but without some of the information on the boundary.

An algebraic varietyD(I") arising as in the theorem is calledagally symmetric vari-
ety, or anarithmetic locally symmetric varietyor anarithmetic variety(but not a Shimura
variety).

The theorem of Borel

THEOREM 3.13(BOREL). Let D(I") and D(I")* be as in[8.11). LetV be a nonsingular
quasi-projective variety ovel. Then every holomorphic mgp V2" — D(I")2"is regular,
and extends to a regular mafy: M* — D(I")*.

The key step in Borel's proof is the following result:

LEMMA 3.14 Let D} be the punctured diskz | 0 < |z| < 1}. Then every holomorphic
map D;" x D; — D(T') extends to a holomorphic map;™* — D(T")* (unfortunately
D(T")* is not a complex manifold (it has singularities), but rather a complex analytic vari-
ety, which means it can be locally defined as the zero set of a collection of power series).

The original result of this kind is the big Picard theorem, which, interestingly, was first
proved using elliptic modular functions. Recall that the theorem says that if a funttion
has an essential singularity at a poine C, then on any open disk containipg f takes
every complex value except possibly one. Therefore, if a holomorphic fungtmmD
omits two values irC, then it has at worst a pole @tand so extends to a holomorphic func-
tion D; — P!(C). This can be restated as follows: every holomorphic function figjfrto
P!(C) \ {3 points} extends to a holomorphic function from, to the natural compactifi-
cationP!(C) of P1(C) \ {3 points}. Over the decades, there were various generalizations
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of this theorem. For example, Kwack (1969) repla@¢C) . {3 points} with a more
general class of spaces. Borel (1972) verified Kwack’s theorem appliéditp Cc D(T")*,
and extended the result to maps from a produft x Dj.

Using the lemma, we can prove the theorem. According Hironaka’s [Fields medal]
theorem on the resolution of singularities (Hironaka 1964 Annals), we can réabsean
open subvariety of a projective nonsingular varietysuch that’* ~. V' is a divisor with
normal crossings. This means that locally for the complex topology the inclifsien V'*
is of the formD;" x Dj — Dj**. Therefore, the lemma shows that Va" — D(T")a"
extends to a holomorphic map@" — D(T")*, which is regular by Chow'’s theorer.(L0).

CoROLLARY 3.15 The structure of an algebraic variety di(I") is unique.
PROOF. Apply (3.14 to the identity map. O

The compactificatiorD(I") — D(I")* has the following property: for any compacti-
fication D(I") — D(T')" with D(T")" \. D(T") a divisor with normal crossings, there is a
unique regular ma@ (I')" — D(T")* making

D(T)*
commute. For this reaso®)(I") — D(I")* is often called theninimal compactification.
Other namesstandard Satake-Baily-Borel Baily-Borel.

Finiteness of the automorphism group

PrROPOSITION3.16. The automorphism group of the quotient of a hermitian symmetric
domain by a neat arithmetic group is finite.

PROOF. As T is a neat arithmetic subgroup afut(D), D is the universal covering space
of I'\ D andI is the group of covering transformations (Greenberg 1967, 5.8). An automor-
phisma: I'\D — I'\ D lifts to an automorphismx: D — D. Foranyy € T, aya!is a
covering transformation, and so lieslin Conversely, ai in the normalizerV of I" defines
an automorphism aof\ D. Thus,Aut(I'"\D) = N/I". Becausd' is closed inAut(D) and
is countable, so also i C Aut(I"). If N were not discrete, every finite subset of it would
have empty interior, and since€ is the countable union of such sets, this would violate the
Baire category theorem (Kelley 1955, pp200-201). Because the quotidnt6D) by T’
has finite measure, this implies thHathas finite index inV. (See also Margulis 1991, II
6.3.)

Alternatively, there is a geometric proof. According to Mumford 1977, Proposition 4.2,
such a quotient is an algebraic variety of logarithmic general type, which implies that its
automorphism group is finite (litaka 1982, 11.12). O
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4 Connected Shimura varieties

Congruence subgroups

Let G be a semisimple algebraic group ov@r Choose a faithful representatipn G —
GL(V) and a lattice\ in V/, and define

L(N)={g9 € GQ) [ p(g)A C A, (p(g) —1)A C NA}.

For example, it = GL,, V = Q? with its natural action of7, andA = Z?, then

w-{(: Y

A congruence subgroup of7(Q) is any subgroup containing sonig¢/V') as a subgroup
of finite index. It is not difficult to see that this definition is independent of the choige of
andA, but we shall give a more natural definition of congruence subgroup shortly.

With this terminology, an arithmetic subgroup 6{Q) is any subgroup commensu-
rable withI'(1). The congruence subgroup problem &@rasks whether every arithmetic
subgroup ofG(Q) is congruence, i.e., contains somgV). For some simply connected
groups (e.g.SL,, for n > 3 or Sp,,, for n > 2 Bass, Milnor, and Serre) the answer is
yes, butSL, and all nonsimply connected group have many noncongruence arithmetic sub-
groups (for a discussion of the problem, see Platonov & Rapinchuk 1994, section 9.5).

In contrast to arithmetic subgroups, the image of a congruence subgroup under an
isogeny of algebraic groups need not be a congruence subgroup.

We defineA ;, thering of finite adelesto be the restricted topological product

Ay =T1(Qy: Ze)

where/ runs over the finite primes df(i.e., we omit the factoR). Thus,A ; is the subring

of [ [Q, consisting of théa,) such that, € Z, for almost all/, and it is endowed with the
topology for which] [Z, is open and has the product topology. Similarly, for an algebraic
groupG over@Q, we defineGG(A ) to be the restricted product

G(As) = TI(G(Q): G(Zy)).

To defineG(Z,), we choose a representatiGh— GL(V') and a lattice\ and letG(Zy)
be the stabilizer o\ ® Z, in G(Q,). The groupG(Z,) depends on the choice bf andA,
but for any two choices;7(Z,) will coincide for almost all, and soG (A ) is independent
of the choice. Alternatively (equivalently), extexddto a group schemg over an open
subset’ of Spec Z, and defineg=(Z,) = G(Z,) for ¢ € U. If G'/U" is a second such group
scheme, theg’ = G over some open subsetofn U’, and soG’(Z,) = G(Z,) for almost
all 2.

Now, the congruence subgroups@fQ) are those of the forntz(Q) N K with K a
compact open subgroup 6f(Ay).

a,d=1, bc=0 modN}.

Summary: {congruence subgroups {arithmetic subgrougs_{lattices.
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Definition of a connected Shimura variety

Recall thatG(R)* is the identity component @f(R) in the real topology. We s€t(Q)" =
G(Q) N G(R)*. For example,GL2(Q)" is the group of2 x 2 matrices with rational
coefficients having positive determinant.

4.1 LetG be a semisimple algebraic group o@rlet D be a hermitian symmetric domain,
and letG(R)" x D — D be a transitive action such that the stabilizer of any poinbof
is compact. It is convenient to assume also thdtas no connected normal subgrobp
(overQ) such thatf (R) is compact. (IfG did, thenH (R)* would act trivially onD, and
so we could simply replac& with G/ H).

The action ofG(R)™ on D factors through the quotierits
GR)" - G*R)*T — Aut(D)*. (24)

The kernel of the first map is finite, and the kernel of the second is a compact factor of
G¥(R)*.

DefineSh°(G, D) to be the set of all locally symmetric varietiéy ") = '\ D with
I' a torsion-free arithmetic subgroup 6RYQ)* containing the image of a congruence
subgroup ofG(Q)™ (i.e., whose inverse image #(Q)" is a congruence subgroup). The
D(T") form an inverse system,

D(T) « D) if T ST

Note that the image df in Aut(D)* is an arithmetic group (directly from the definition).
Therefore, the theorems of Baily-Borel and Borel apply and show thabthg are alge-
braic varieties and the mags(I") < D(I") are regular. Moreover, there is an action of
G?(Q)* onthe systemy € G3Y(Q)* defines a holomorphic map D — D, and hence a
map

\D — gl'g '\D.

This is holomorphic (se8.2), and hence regulaB(13).

EXAMPLE 4.2. (a) G = SLy, D = H;. ThenSh°(G, D) is the family of elliptic modular
curvesI'\ D with T a torsion-free arithmetic il*GLy(R)™ and containing the image of
['(N) for someN.

(b) G = PGLy, D = H;. The same as (a), except now theare required to be
congruence subgroups Bf5L,(Q) — there are many fewer of these.

(c) Let B be a quaternion algebra over a totally real fieldThen

B ®qQ R = Hv: Fc—>]RB QFw R

“Itis probably helpful if I note thafut(D) ™ is the same whether we considems a riemannian manifold
(i.e., forget the complex structure), a complex manifold (i.e., forget the hermitian structure), or as a hermitian
complex manifold (see Baily & Borel 1966, Appendix). This is not true without the + — there may exist
antiholomorphic isometries.
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and eachB ®p, R is isomorphic toH (the usual quaternions) di/>(R). Let G be the
semisimple algebraic group ov@rsuch that

G(Q) = Ker(Nm: B* — F™),
and similarly for anyQ-algebraR. Then
G(R) = H*' x -+ x H*' x SLy(R) x -+ x SLy(R).

Assume at least orn¢l.,(R) occurs, and leD be a product of copies 6f, one for each
copy of SLy(R). There is a natural action ¢f(R) on D which satisfies the conditions of
(4.1), and hence we get a connected Shimura variety. Note that, in this 2dsbetomes

H*' x -+ x SLy(R) x -+ — H*'/ £ 1 x --- x SLy(R)/ £ T — SLy(R)/ £ 1 x --- .

In this caseD(I") has dimension equal to the number of copied®fR) in the decompo-
sition of B ®g R.

REMARK 4.3, Let G be a connected reductive group o¥grand letl" be an arithmetic
subgroup of7(Q). ThenI"\G(R) is compact if and only it7(Q) has no unipotent elements
# 1 (Borel 1969, 8.7). The intuitive reason for this is the rational unipotent elements
correpond to cusps (in the case&if; acting onH;), so no rational unipotent elements
means no cusps.

In the above example, iB = M,(F') it has unipotent elements, e.g{ 1) and so
I'\G(R) is not compact — in this case we get tHébert modular varieties This implies
that theD(I") are not compact. On the other handBifis a division algebraiz(Q) has no
unipotent elements (because otherwis@vould have a nilpotent element). Thus, in this
case the)(I") are compact (as manifolds, hence they are projective as algebraic varieties).

Strong approximation theorem

THEOREM4.4(STRONG APPROXIMATION). If GG is a simply connected semisimple alge-
braic group overQ with no Q-factor H such that such that/ (R) is compact, thetiz(Q)
is dense inG(Ay).

For the proof, see Platonov & Rapinchuk 1994, Theorem 7.12, p427. Note that, because
G(Z) is discrete in7(R) (3.9), if G(R) is compact, theid:(Z) is finite, and sa(Z) is not
dense inG(Z), which implies that7(Q) is not dense itz (A ).

Adelic description of D(I")

Assume( to be simply connected.

PROPOSITION4.5. Let K be a compact open subgroup@fA ), and let

'=KnGQ)
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be the corresponding congruence subgroupGdf)). The mapz — [z, 1] defines a
bijection

M\X* 2 GQ\X* x G(Af)/K. (25)
Here G(Q) acts on bothX ™ andG(A ) on the left, and<” acts onG (A ) on the right:

q-(z,a) k= (qu,qak), q€GQ), ze€X", aeGA;), keK.

When we endovX * with its usual topology and(A ;) with the aclic topology (equiva-
lently, the discrete topology), this becomes a homeomorphism.

PROOF. Becauséy isopenG(Ay) = G(Q)- K. Therefore, every element 6f(Q)\ X * x
G(Ay)/K is represented by an element of the fouml]. By definition, [z, 1] = [2/, 1] if
and only if there exisy € G(Q) andk € K such thatt’ = ¢z, 1 = ¢k. The second
equation implies thag = k=! € T, and sdz, 1] = [«/, 1] if and only if z andz’ represent
the same element iR\ X .
Consider

z—(,[1])
_—

X+ Xt x (G(Ay)/K)

! l

D\t I @\ Xt x GA) /K.

As K isopenG(Ay)/K is discrete, and so the upper map is a homeomorphisktadnto
its image, which is open. It follows easily that the lower map is a homeomorphismni]

ASIDE 4.6. (a) What happens when we pass to the inverse limit b®ethere is a map
Xt = 1limT\ X
<_
which is injective becausel’ = {1}. Is the map surjective? The example
Z — limZ/mZ = Z
%

is not encouraging — it suggests I\ X * might be some sort of completion &f* rela-
tive to thel’s. This is correct. In fact, when we pass to the limit on the righBp e get
the obvious answer, namely,

lim xGQ\X* x G(Ay)/K = G(Q\X" x SLa(Ay).

Why the difference? Well, given an inverse systgi);x of groups acting on an inverse
system(S;);c; of topological spaces, there is always a canonical map

lim G\ lim S; — lim (G;\.S;)

and it is known that, under certain hypotheses, the map is an isomorphism (Bourbaki 1989,
[l §7). The system on the right i) satisfies the hypotheses; that on the left doesn't.

(b) Why replace the single coset space on the left with the more complicated double
coset space on the right? One reason is that it makes transparent that there is an action
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of G(Ay) on the inverse systerfi’\ X *)r whenG is simply connected, and hence, for
example, an action af(A;) on

lim 5 (D\X ", Q).

Another reason will be seen presently — we use double cosets to define Shimura varieties.
Double coset spaces are pervasive in work on the Langlands program.

(c) The inverse limit of theD(T") exists as a scheme — it is even noetherian and regular.
However, there seems to me no advantage in working with it rather than the inverse system.

Corrections:

The arrows in the bottom row of (16) point in the wrong direction.

Some of the discussion leading up to Theoreh® may be a bit oversimplified. For
example, in/L.16) it is probably better to say that the hypothesis implies that the curvature
tensor is invariant under parallel translation, and hence so also the sectional curvature. See
Deligne 1973 or Wolf 1984 for more details.



