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As I said in my talk at the workshop, the p-adic orbital
integrals which occur in the Langlands-Shelstad fundamental
lemma for the unitary groups are of geometric nature. They
are traces of Frobenius endomorphisms acting on /-adic
cohomology groups of the so-called affine Springer fibers for
the full linear groups.

Today, I will expand the geometrical part of my talk at
the workshop. I apologize in advance for the overlap between
the two talks.

1. Affine Springer fibers

Let k£ be an arbitrary algebraically closed field and F' =
k((zwg)). For every finite separable extension F of F, 1
denote as usual by vg : E* — 7Z the discrete valuation
of £/ and by Of its ring of integers.

We fix a non empty finite family (F;);cr of finite separable
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extensions of F' and

Y1 = Diervi € @Ez = b
1€l
satisfying the following properties :
- for every i € I, vg, (i) > 0,
- for every ¢+ € [, ~; generates F; over F', so that
E; = Flz|/(P;(x)) where P;(z) € F|z] is the minimal
polynomial of ~; over F',
- the polynomials P;(x) are two-by-two distinct.

The affine Grassmannian Grass; is the ind-scheme over
k of Op-lattices M C FEj. Basic examples of lattices are
Op, = EBz‘eI Op, C Er and A; = Op|y1] C Of,.

Any Op-lattice M C E; has an index [M : Aj] with
respect to the lattice A;. For each integer d, we set Grass‘} =
{M € Grass; | [M : A;] = d}. Then (Grass?)qez is the
family of the connected components of Grassj.

The affine Springer fiber at ~; is the closed reduced ind-
subscheme X; of Grass; whose closed points are the Op-
lattices M C FE; such that

yiM C M.

For each integer d, we set X¢ = X; N Grass{.

The lattice Ay C FEj is in fact an Opg-subalgebra of
dimension 1 with total ring of fractions equal to E; and
with normalization A; = O, C Ej. The group E’I>< /A}< 1S
an extension

1= AYJAY - EXJAY 25 A =0
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where A; = Z! and where v; is induced by the family
(vg, )ier- Therefore, E7 /AT is in a natural way the group of

k-points of a commutative group scheme PIh over k which is
smooth of dimension

5_] — dlmk(Z[/AI),

and which has A; as group of connected components. The
connected component of the identity P;’O of Pr, the group

of k-points of which is g}( JAT, is an extension of a torus
I
Gm,k/Gm,ka

(G, 1s diagonally embedded into G, ;) by a commutative
unipotent group scheme. |
The action by homotheties of E; /A7 on the lattices in
X obviously comes from an algebraic action of Pfh on Xj.
The lattice A; C Ej is a particular point z; € X;. Its
stabilizer in Pﬁ is trivial. The orbit U; = Pﬁ cxy C Xy 1s
thus an open subset of X; which is isomorphic to Pfh.

For every a € Pfu, we have
d _ yd+|vi(a)]
a- X7 =X;"""

where |A| =), A

1€l
THEOREM (Kazhdan-Lusztig). — The affine Springer fiber

X1 18 k-scheme which 1s locally of finite type and of finite
dimension. Its connected components are the X}l s, d € 7.



For every section o : AY — E/AY = Pfh(k) of v; over
the subgroup AY = {\ € A; | |\| = 0}, the quotient space
Z;r = X1/o(AY) is the disjoint sum of projective k-schemes
Z% = X%/o(AY) for d € Z. Moreover the quotient map

X7 — Z; is an étale Galois covering with Galois group AY.
]

FEzamples : (i) Let us assume first that [I| = 1, F =
Flog|/(wg —wF) and v = w} for two relatively prime pos-
itive integers n, m. Let V be a k-vector space of dimension
20 = (n—1)(m —1) and let N a regular nilpotent endomor-
phism of V. Then A; = Z and X9 = 79 is the closed subset
of the Grassmannian variety of d-planes in V' whose points
are the W C V such that

N™(W)C W et N™(W) C W.

Lusztig and Smelt have shown that this closed subset may
be paved by standard affine spaces AZ’F parametrized by the
subsets I' C Z having the following two properties :

-I'=mN—-nNCT,
- there exists an integer N > 0 for which I' C] — oo, N]
and || — oo, N] = T'| = N.

In particular, the dimension of the Springer fiber is  and
its Euler-Poincaré characteristic is m}'_n (m;n)

For n = 2 and m > 3, we have 26 = m — 1, N = 0 and
the affine Springer fiber is an ordinary Springer fiber which
admits the same paving

A UALU---UAS
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as the standard projective space Pi but which is not isomor-
phic to P‘,i.

(ii) If I ={1,2}, Car(k) #2, By = Fs = F, v = wp
and v2 = —wp, X} is the chain of projective lines which
is obtained by taking Z copies of P} and by identifying the
origin of the A-th copy to the point at infinity of the (A+1)-
the copy. The group o(AY) = Z acts by translation on X7
and Z9 is the plane cubic curve with an ordinary double
point which is obtained by identifying the origin and the
point at infinity of Py. ]

2. Compactified Jacobians

A trivial but nevertheless essential remark is that a lattice
M € Xy is nothing else than a rank 1 torsion free A;-module
M which is equipped with a trivialization E; ® 4, M = Ej.

As A; = k|lwp,z]]/(Pr(z)) where Pr(z) = [[,c; Pi(x),
Spf(A;) is a formal germ of singular plane curve. Thus it
makes sense to try to find a projective curve C over k
together with a closed point ¢ of C' for which Ay is the

completion of the local ring O¢ .. In fact there is a nice way
to do that.

LEMMA. — There exists an integral projective curve C
over k equipped with a close point ¢ having the following
properties :

(1) C is smooth over k outside c;
(2) Oc,c = Ar;

(3) the normalization C of C is isomorphic to the standard



projective line.

Proof : We consider the standard affine line C' — {0} =
A} C P} = C and we arbitrarily choose a family (¢;);cs of
two-by-two distinct closed points in C'—{oo}. Then, for each

¢ € I, we arbitrarily fix an isomorphism of the completion of

the local ring O o of C' at ¢; onto Op,. Finally, we construct

C by simply replacing in C the semi-local ring Hie I Oa,a

by its intersection with Ay inside [, ., 65; >~ Op,. [
Let P = Pic¢yy, be the Picard scheme of C' and P be the

compactified Picard scheme of C' :

- P 1s the moduli space of isomorphism classes of line
bundles L over C'; it is a commutative group scheme
over k, whose group of connected components is Z,
the connected components being cut by the degree
of £; the connected component of the identity PV in
P is affine and is thus an extension of a torus by a
commutative unipotent group scheme;

- P is the moduli space of isomorphism classes of rank
1 torsion free coherent Oc-Modules M ; it contains P
as an open subset; its connected components P? are
again cut by the degree of M and are now projective
over k; P acts on P by tensor product and

pl.pY =P 4 d e 7.

THEOREM (Rego; Altman, larrobino et Kleiman). — As
the formal germ of C at its unique singular point c is the



formal germ of a plane curve, every connected component

P of P is integral and locally of complete intersection.
Therefore, each connected component P is a PY-equivariant

compactification of P?. ]

What is the link between P and our affine Springer fiber
Xr?

We have a scheme morphism
X[ — ?

which maps any lattice M C Ej in X, viewed as a rank
1 torsion free module over A; together with a trivialization
Er ®a4, M = Ej, to the rank 1 torsion free coherent Oc¢-
Module which is obtained by gluing Oc_¢.) and M along

Spec(Er) = (C — {c}) x¢ Spec(Ar).

That morphism is surjective and equivariant with respect to
the surjective homomorphism

Pl P

which maps a € F /AT to the line bundle over C' which is
obtained by gluing as before Oc_y.1 and A; = O¢ . along
Spec(Er) with the transition function a.

We may identify Pﬁ with the moduli space of pairs (£,¢)
where L is a line bundle on C' and ¢ is a trivialization of
the restriction of L to C' — {c}. In this identification, the

surjective homomorphism PIu —» P is simply the map which
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forgets ¢ and its kernel K C PIh is nothing else that the
abelian group

K =H(C —{c},G,)/H"(C,G,,).

Let us denote by {¢; | ¢ € I} C C the fiber at ¢ of the

normalization morphism C' — C. We then have
K = H(C —{& | i € I},Gw)/H"(C,Gy)

and K is canonically isomorphic to the group of degree 0
divisors on C the support of which is contained in {¢; | ¢ €
I}.

The morphism vy : PIu — Aj maps any such divisor
D ier Nilci] to A € A(} C A; and K is thus the image of
a section o of vy over A(}.

PRrROPOSITION. — The surjective morphism X; — P fac-
tors through a radicial morphism

Z]ZX[/K%?. ]

Remark : The above radicial morphism Z; — P is not
in general an isomorphism. For example, if [I| = 1, F =
Flowg]/(w% — wr) and v = @}, then Z9 = P, but P’
is isomorphic to the plane cubic C' with an ordinary cusp
x? = y? as unique singularity.

More generally, if |I| = 1, so that C is unibranch, it may
be true that the radicial morphism Z9 — PY is simply the

normalization map. []
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COROLLARY. — Fach connected component Z¢ of Z is

wrreductble of dimension 6. The open subset Uy = Pfh.xj 18
dense 1n X. []

3. Galois coverings of the compactified Jacobians

Another consequence of our last proposition is that the
étale Galois covering X; — X;/K = Z; with Galois group
K = AY descents to an étale Galois covering

PP P
with the same Galois group, which extends, and which is
eqauivariant with respect to, the surjective homomorphism
P; — P with kernel K.
In some sense, P! is the moduli space of pairs (M, ¢) where

M is a rank one torsion free coherent Oc-Module and ¢ is a
trivialization of M over the smooth locus C' — {c} of C.

It is useful to have the more direct definition of P4 — P
that I will give now.
We may identify the Galois group

K =H(C —{c},Gn)/H*(C,G) = A}

~/

to the character group X*(7') of the maximal torus 7T
G! /Gy sitting inside PP.

Estéves, Gagné and Kleiman have extended to singular
curves the definition of the autoduality morphism for the
Jacobians of the smooth projective curves. This morphism

0: P’ — Picy ),
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maps £ € PY to the line bundle (L) over P the fiber at
M € P of which is

0(L)n = DOV) @ D(L @ M)~ L,

Here, for any coherent O¢-Module &F, D(F) = det RT'(C, F)

is the determinant of the cohomology of &.

PrROPOSITION. — The Grothendieck isomorphism
H'(P,X*(T)) = Homy,— g sen (T Picp ;)

maps the X*(T)-torsor P* — P to the restriction of 0 :
PO—>Pic?/k toT C PV, ]

4. Deformations

A major tool in the study of classical Springer fiber is
the Grothendieck-Springer simultaneous resolution of the
nilpotent cone.

For the affine Springer fibers, such a tool does not seem to
be available. Indeed, let us consider the regular semisimple
topologically nilpotent locus in the Lie algebra gl (F'). Our
data v = (v; € F;)ser describe a GL,,(F')-conjugacy class
in this locus for n = dimp(F;) and any conjugacy class may
be obtained in this way. Therefore, for any point v in the
regular semisimple topologically nilpotent locus, we have a
corresponding Springer fiber X, (X, =2 X7 if v is conjugated
to 7). But, if we let 4 vary, it seems impossible to put in
family the corresponding affine Springer fibers X .
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For example, let us consider the one parameter family

[ zwp wh
Ve = Wp —2ZOF

of regular semisimple topologically nilpotent elements in
gly(F). The element 7, is conjugated to vy where

(I={1,2},B1 = Bp = F,y; = (=1)"zwp(1 + 2" 'wp)?)
if z # 0 and where
(111 =1,E = Flwp]/(@f — @F),y = @)

if z = 0. Therefore, the connected component of the affine
Springer fiber X '(y)z is a chain of projective line if z # 0 and
a single projective line if z = 0. It is hard to imagine an
algebraic family with fibers X 22.

The problem remains the same if we replace ng by its
quotient Zgz. Indeed, Zgz is a plane cubic with an ordinary
double point if z # 0 and a single projective line again if
z = 0. But, if we replace the Z, ’s by the corresponding
compactified Jacobians, the problem disappears : there exists
a one parameter family the generic fiber of which is a plane
cubic with an ordinary double point and the special fiber of
which is a plane cubic with an ordinary cusp!

The link between the affine Springer fibers and the com-
pactified Jacobians is thus a powerful tool. It allows us to
deform, up to homeomorphisms, the affine Springer fiber by
deforming first the curve C, and then by taking the relative



12

compactified Jacobian of the resulting relative curve over the
base of the deformation.

5. Back to the geometric fundamental lemma

For simplicity, I will restrict myself to the key case where
I ={1,2}.

We have an action of the multiplicative group Gy, ; on
the affine Springer fiber X ?72. It is induced by the action of
k>* on F; = Fy @ Fs which is given by

t-(a:l @.’132) :tml @332.

The fixed point set of this action is the set of lattices M C
FEi9in X ?’2 which splits into a direct sum M = M; & M5 of
lattices M, C E,,. This fixed point set is thus nothing else
than the disjoint sum of X{ x; X, “for d € Z, or equivalently
7 x (729 x3, Z3) (recall that X9 = 7).

Let us consider the map in Gy, -equivariant f-adic ho-
mology which is induced by the inclusion of that fixed point
set. It is a morphism

(%) Ho(Z9 xy ZDZ[] — HS™" (XD,)

of graded Qy[Z][0]-modules where ¢ is of degree 2, where 0
is the first Chern class of the universal line bundle on the
classifying stack of Gy, ; and where O acts as the derivation
which is defined by 9(t) = 1.
The non trivial character k = AY = Z — {£1} defines a
maximal ideal m of Q[Z] and we may localize (x) at m.
Let us assume from now on the purity conjecture :



13

CoNJECTURE (Goresky, Kottwitz et MacPherson). — For
every wnteger m, the m-th groups of ordinary £-adic coho-
mology of the Springer fibers X?Q, ZY and Z39 are all pure
of weight m.

Then the map (%) and its localization (%), are both
surjective. Moreover, in order to complete the proof of the
fundamental lemma for unitary groups, one only needs to

show that the kernel N of (x)y, is equal to the kernel of the
action of 8" on He(Z) x4, Z3)[Z]w[t], that is

r—1
Ny, = P Ho(2) x1 Z)[Z)ut” C Ho(Z9 x1, 29)[Z]m]1]
p=0

where r = r1 o is the power of ¢ in the transfer factor.
In order to get this result, I proceed in two steps :

- first, I use a deformation, up to homeomorphisms, of
Z? 5 and its Galois covering X?Q — Z?Q in order
to obtain a specialization map which will gives the
inclusion

N, C Ny C Ho(ZY Xy Z3)[Z]w[t];

- then, by considering the Leray spectral sequence for the
non algebraic morphism X; — X7 X X9 which maps
M C E172 to (M1 =MnNDM C E1,My = prEZ(M) C
FEs), I show that the length of Ny as a Qy[Z]n-module
is precisely r times the Euler-Poincaré characteristic of
Z? Xk Zg
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Let me conclude this talk by describing the deformation
that I use in the first step.
We have

Az = kllwr]|[z]/(P(z) P (x))

where P, (z) € (wp,z) C k|[wr]|[x], « = 1,2, are irreducible
and relatively prime. The integer r is the intersection number
of the two formal germs of irreducible plane curves Spf(A;)
and Spf(A;1) where A, = k||wr]|[x]/(Pa(x)).

Let us denote S = Spec(k|[z]]), s the closed point of S,
n = Spec(K) its generic point and 77 = Spec(K ) a geometric
point over 7.

ProPOSITION. — There exists a flat projective morphism
C — S having the following properties :
- 1ts geometric fibers are all integral and one dimensional,
so that the singular locus D of C over S is finite over S ;

- the reduced special fiber of D — S is made of only one
closed point ¢ of Cy and the reduced generic fiber of D — S
1s made of two K -rational point ci1,co and r closed points

(dp)p:L...,r ;

- the completion of the local ring of Cy at ¢ is isomorphic
to A172 ;

- the completion of the local ring of Cy at c, 1s isomorphic

- each point d, 1s an ordinary double point of the curve Cs ;

_ the normalization C of C is S-isomorphic to Py and the
normalization map v : Py — C has the properties that
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its base changes vy : P; — U, and vy : IP’% — O3 are the
normalization of the special and the generic fiber of C.

[l

In fact, we construct C'in such a way that the completion
of the local ring of C at ¢ is isomorphic to

kllz, wr|]lz]/(Pi(z) Py(z = 1)).

Having this deformation, we take its relative compactified
Jacobians P over S and we checks that its geometric generic
fiber Pﬁo is homeomorphic to

79 %, Z9 x4 E”

where F is the plane cubic over K with an ordinary double
point which is the quotient of the chain E" of projective
lines that we considered earlier. Moreover, we prove that
the action of Gy, 1, on the special fiber P? lifts to a natural

action of G_ 7 on PO which is homeomorphlc to the action

K
on / 0 s, Z5 1 X BT Wthh 1s trivial on the first two factors

and Wthh is the diagonal action on the third one (G _ + acts

b

in the usual way on F).

In equivariant homology as well as in ordinary homology
there is a functorial specialization map from the homology
of the generic fiber to the homology of the special fiber each
time we have an algebraic family over S. Therefore, we get
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a commutative diagram of graded Qy[Z"][0]-modules

Ho(Z) %1 Z9)[Z7)[t] —— Ho(Z7 x1, Z3)[Z][t]

l i

Gm r Gm,
Ho(Z}) xx 23) @ Ho™ " ((BY)") —— H&™"(X7,)

where the action of Q[Z"] on the right column factors
through the augmentation epimorphism Q[Z"] — Qy|Z].
More precisely,

- the two horizontal arrows are specialization maps in
equivariant homology and the top one is nothing else
than the tensor product of the augmentation epimor-

phism by He(Z} x5 Z3)[t];

- the vertical arrows are induced by the inclusions of
the fixed point sets of the Gy, y-action on the generic
fiber for the left one, and on the special fiber for the

right one, and they are surjective thanks to the purity
conjecture.

Therefore our N, , which is nothing else than the localiza-
tion at m of the image of the kernel of the left vertical arrow
by the top horizontal arrow, is contained in the kernel of the
localization at m of the right vertical arrow map, which is
by definition our N,. Therefore, we are done.



