
Page 1 of 27

Medical Image Processing Overview

Hongmei Zhu, University of Calgary

Biomedical image processing has experienced dramatic expansion, and has been an
interdisciplinary research field attracting expertise from applied mathematics, computer
sciences, engineering, statistics, physics, biology and medicine. Computer-aided
diagnostic processing has already become an important part of clinical routine.
Accompanied by a rush of new development of high technology and use of various
imaging modalities, more challenges arise; for example, how to process and analyze a
significant volume of images so that high quality information can be produced for disease
diagnoses and treatment. The principal objectives of this course are to provide an
introduction to basic concepts and techniques for medical image processing and to
promote interests for further study and research in medical imaging processing.

1. PRINCIPLES OF MAGNETIC RESONANCE IMAGING

During the past few decades, with the increasing availability of relatively inexpensive
computational resources, computed tomography (CT), magnetic resonance imaging
(MRI), doppler ultrasound, and various imaging techniques based on nuclear emission
(PET (positron emission tomography), SPECT (single photon emission computed
tomography), etc) have all been valuable additions to the radiologist’s arsenal of imaging
tools toward ever more reliable detection and diagnosis of disease. Tomographic imaging
principles are rooted in physics, mathematics, computer science, and engineering. Here,
we mainly focus on the conceptual overview of the principles of MRI, one of the major
imaging modalities currently in use.  Excellent detailed discussions can be found in
Nishimura  [1] and Liang and Lauterbur [2].

What is MRI? Briefly, it is a tomographic imaging technique that produces
images of internal physical and chemical characteristics of an object from externally
measured nuclear magnetic resonance (NMR) signals.  MR imaging is based on the well-
known NMR phenomenon independently discovered by Bloch and his coworkers at
Stanford [3] and Purcell and his colleagues at Harvard [4] in 1946. Bloch and Purcell
shared the Nobel prize in physics for this discovery in 1952.

An MR scanner shown in Fig. 1.1 consists of three main hardware components: a
main magnet, a magnetic field gradient system, and a radio-frequency (RF) system. The
main magnet is a permanent magnet. It generates a strong uniform static field, referred to
as the B0 field, for polarization of nuclear spins in an object. Most imaging systems
operate at fixed field strength in units of Tesla (1 Tesla (T) = 104 Gauss (G)). The
magnetic field gradient system normally consists of three orthogonal gradient coils, Gx ,
Gy and Gz, essential for signal localization. The gradient field strength is usually less than
1 G/cm. The RF system consists of a transmitter coil that is capable of generating a
rotating magnetic field, referred to as the B1 field, for exciting a spin system, and a
receiver coil that converts a precessing magnetization into an electrical signal.  On human
imaging systems, the strength of B1 is typically a small fraction of a Gauss.
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Fig. 1.1 Simplified drawing of the basic instrumentation.

While an MRI system is rather complex, the underlying imaging principles of
such a system are rather straightforward, especially from the signal processing point of
view. The imaging process involves forward and inverse Fourier transforms as shown in
Fig. 1.2.

Fourier
(k-)Space

Object
Space

Image
Space

Fig. 1.2 The MR imaging process can be viewed as forward and inverse Fourier
transforms.
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The imaging process does not involve the use of ionizing radiation and hence
does not have the associated potential harmful effects. MR signals used for image
formation come directly from the object itself. To understand how MR signals are
generated requires understanding of quantum mechanics in the classical vector model.

Atoms with an odd number of protons and/or an odd number of neutrons possess
a nuclear spin angular momentum, and therefore exhibit the MR phenomenon.
Qualitatively, these nucleons can be visualized as spinning charged spheres that give rise
to a small magnetic moment shown in Fig. 3, referred to as spins. In biological
specimens, hydrogen (1H), with a single proton, is the most abundant (the body consists
largely of H2O), the most sensitive and by far the most studied. Therefore, we usually
refer to 1H (proton) imaging.

Fig. 1.3 Nuclei with a nonzero spin are regarded as microscopic magnets [2].

In the absence of an external magnetic field, the spins are oriented randomly due
to thermal random motion and the net macroscopic magnetic moment is zero (Fig 1.4a).
To activate macroscopic magnetism from an object, it is necessary to line up the spin
vector. This is accomplished by exposing the object to a strong external magnetic field
B0. The magnetic moment vectors tend to align in the direction of B0 (referred to as the z-
direction) to create a net magnetic moment M (Fig. 1.4b). Also, the spins exhibit
resonance at a well-defined frequency, called the Larmor frequency w. The Larmor
frequency is defined as

  

† 

w = g B0 or           f =
g

2p
B0

where g , the gyromagnetic ratio, is a known constant for each type of atom. For 1H,

† 

g 2p = 42.58 MHz/Tesla. As an analogy, precession of a nuclear spin about an external
magnetic field is similar to a spinning top does in a gravitational field, see Fig. 1.5.
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Fig. 1.4 Nuclear magnetic moment vectors (a) pointing in random directions and (b)
aligned in the direction of an external magnetic field.

Fig. 1.5 Precession of a nuclear spin about an external magnetic field is similar to the
wobbling of a spinning top in a gravitational field [2].

At equilibrium, the transverse component of  M0 (i.e., the projection of M0 in the
x-y plane, namely, Mxy ) is zero (Fig 1.6a). To obtain MR signal, a RF field B1 applies an
external force the transverse plane to excite these spins out of equilibrium and tip M0
away from the z-axis (the direction of B0 ), creating a measurable (nonzero) transverse
component Mxy (Fig. 1.6b). When turning the excitation off, relaxation back to its
equilibrium also occurs with the length of the magnetization vector not remaining
constant over time.

(a) (b)
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Fig 1.6 (a) The precessing nuclei induce a voltage in a receiver coil placed parallel to the
x-y plane. Frequency of induced voltage is the same as the precessional frequency w0. (b)
Detected signal is modulated by the fundamental relaxation processs, T1 and T2 decays.
Both processes decrease Mxy as M Æ M0.

The time constant characterizing the return of the magnetization vector along the
z-axis (longitudinal axis) is called T1, while the time constant characterizing the decay of
the transverse component is called T2 . In humans, T1 values of most tissues range from
about 100-1500 ms (Fig. 1.7), and its values increase as B0 increases. T2 values range
from about 20-300ms (Table 1.1) and it is largely independent of field strength.

Fig. 1.7 Approximate T1 values as a function of B0 [1].

(a) (b)
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Table 1.1 T2 of some normal tissue types [1].

MR images are extremely rich in information content. The image pixel value can
be considered as a function of a host of parameters, including the relaxation time
constants T1 and T2, and the proton density (that has distinct values for different tissues).
Therefore, by changing the effect of these parameters, MR images obtained from the
same anatomical position can look drastically different (see Fig. 1.8). Note that left brain
shown in an image is the right brain of the subject, and vise versa. These images can be
further processed to produce new maps regarding water diffusion, blood flow, etc. Hence,
the flexibility in data acquisition and the rich contrast mechanisms of MRI endow the
technique with superior scientific and diagnostic values (Fig. 1.9).

Fig. 1.8 Three images (a) T2-weighted (T2w), (b) T1-weighted (T1w), and (c) proton
density (PD) images were obtained from the same cross section of a human head.

T2w T1w PD
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T2w FLAIR 3D MRaT1w

Fig. 1.9 Multiple MR images were acquired to help neurologists diagnose a stroke patient
who had middle cerebral artery occlusion in comparison to the right side of the brain.

Further Reading:
1. DG Nishimura, Principles of Magnetic Resonance Imaging, April 1996.
2. Z-P Liang and PC Lauterbur, Principles of Magnetic Resonance Imaging: a signal

processing perspective, IEEE press series in biomedical engineering, 1999.
3. F Bloch, “Nuclear induction,” Phys. Rev. vol 70, pp 460-474, 1946.
4. N Bloembergen, EM Purcell, and RV Pound, “Relaxation effects in nuclear magnetic

resonance absorption,” Phys. Rev. vol. 73, pp 679-712, 1948.
5. Hornak’s on-line MR manual, www.cis.rit.edu/htbooks/mri/inside.htm
6. www.mri.swmed.edu/physwebold/mriphys1/index.htm
7. D Canet, Nuclear Magnetic Resonance: Concepts and Methods, John Wiley & Sons,

New York, 1996
8. RH Hashemi and WG Bradley, Jr., MRI: The Basics, Williams & Williams,

Baltimore, MD, 1997
9. M NessAiver, All You Really Need to Know about MRI Physics, Simply Physics,

5816 Narcissus Ave, Baltimore, MD, 1997
10. WJ Schempp, Magnetic Resonance Imaging: Mathematical Foundations and

Applications, John Wiley and Sons, New York, 1998

2. FUNDAMENTALS OF THE FUNDAMENTALS: FOURIER THEORY

This section reviews Fourier theory, fundamentals for understanding MRI artifacts and
image processing. Especially, we will focus on a few essential topics: the Fourier
convolution theorem, sampling theory, and discrete Fourier transforms. A complete
coverage can be found in [2,11,12].

Given a continuous function 

† 

f x( )  of a real variable 

† 

x , the Fourier transform of

† 

f x( )  is defined by

† 

f x( ) Fourier transformæ Æ æ æ æ æ F u( ) = f x( )
-•

+•

Ú exp - j 2p ux( )dx

Conversely, give the Fourier response 

† 

F u( ) , 

† 

f x( )  can be reconstructed by the inverse
Fourier transform

† 

f x( ) = F u( )
-•

+•

Ú exp j2p ux( )du Inverser Fourier Transform¨ æ æ æ æ æ æ æ F u( )
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We usually call

† 

f x( )  and

† 

F u( )  a Fourier pair, both of which contain the same amount of
information but just display the information in different spaces.

A two-dimensional Fourier transform is simply a sequence of two one-dimensional
Fourier transforms, one along the x-axis and the other along the

† 

y-axis, namely

† 

F u,v( ) = ¡y ¡x f x, y( ){ }{ } = f x, y( )
-•

+•

Ú
-•

+•

Ú exp - j2p ux + vy( )( )dxdy

Similarly, we can define the 2D inverse Fourier transform, suitably scaled, by

† 

f x, y( ) = F u,v( )
-•

+•

Ú
-•

+•

Ú exp j2p ux + vy( )( )dudv

Some properties of the Fourier transform relevant to MRI are summarized below
for easy reference.

a) Uniqueness: 

† 

f1 x( ) = f2 x( ) ´ F1 u( ) = F2 u( )
b) Linearity: 

† 

af1 x( ) + bf2 x( ) ´ aF1 u( ) + bF2 u( )
c) Shifting theorem:

† 

f x - x0( ) ´ F u( )e- j 2p ux0

e- j 2p u0 x f x( ) ´ F u - u0( )
d) Conjugate symmetry: 

† 

f * x( ) ´ F* -u( ) . Specifically, if 

† 

f x( )  is a real-valued

function, then 

† 

f x( ) ´ F u( ) = F* -u( )

e) Scaling property: 

† 

f ax( ) ´
1
a

F u
a

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

f) Parseval’s formula: the energy is conserved in both the space and frequency
domains, i.e.,

† 

f x( )
2 dx = F u( )

2 du
-•

+•

Ú
-•

+•

Ú
g) Derivative property:

† 

- j2px( )n f x( ) ´
dnF u( )

dun

dn f x( )
dxn ´ j2p u( )n F u( )

h) Convolution theorem:

† 

f1 x( ) ƒ f2 x( ) ´ F1 u( )F2 u( )
f1 x( ) f2 x( ) ´ F1 u( ) ƒ F2 u( )

Fourier Convolution Theorem:
It is worth spending more time to understand convolution because it is one of the core
concepts in image processing. Mathematically, the convolution of two functions 

† 

f x( )
and 

† 

g x( ) , denoted by 

† 

f x( ) ƒ g x( ), is defined as

† 

f x( ) ƒ g x( ) = f a( )
-•

+•

Ú g x -a( )da
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Fig. 2.1 and 2.2 illustrate the concept of convolution graphically. From the image
processing point of view, convolution can be regarded as a blurring or smoothing
process; while deconvolution is a reverse process of convolution that undoes “blurring”
and recovers the original information.

Fig. 2.1 Graphical illustration of convolution. The shaded areas indicate regions where
the product is non-zero [11].
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Fig. 2.2 Convolving with impulse functions [11].

As we can see, it is not easy to work out convolution by calculating the integral.
Fortunately, the Fourier convolution theorem provides us a simple way to do so, i.e., we
can accomplish convolution in one domain by doing a multiplication in another domain
and inverse Fourier transforming back.

Sampling Theory:
Sampling in the time or object domain is a common scenario in many applications,
however, in MRI, it is the opposite situation of sampling in the frequency domain. But
the underlying sampling theory is the same. Here for simplicity, we will review the
effects of finite sampling through Figs. 2.3 and 2.4 in 1D setting. Extension to the 2D
case is straightforward.
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Fig. 2.3 Graphical development of sampling concepts [11].
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Fig. 2.4 Graphical illustration of finite-sampling concepts [11].

More importantly, one may wonder if all information can be reserved when
sampling data. In fact, this can be true under certain condition. A function 

† 

f x( )  is “band-
limited” if 

† 

F u( )  is of finite extent, i.e., all the frequency information of a band-limited
function is contained in the finite interval [-W, W]. A band-limited function can be
recovered completely from samples whose spacing, 

† 

D x , satisfies
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† 

D x £
1

2W
This is the Shannon sampling theorem. Note that if the sampling period is in units of
cm-1, then the sampling rate in the frequency domain is in units of cm. If the sampling
rate is too low, then the replications overlap, resulting in a condition known as “aliasing”
(see Fig 2.3f). The minimum sampling rate that avoids aliasing is called the “Nyquist
rate” and is equal to twice the maximum frequency of 

† 

f x( ) , i.e., 2W.

Discrete Fourier Transform:
Sampling theory provides a means to understand the periodicity of the discrete Fourier
transform, see Fig. 2.5. One keeps periodicity in mind when processing signals through
the discrete Fourier transform.

Fig. 2.5 Graphical illustration of the discrete Fourier transform [11].

Further Reading:
11. RC Gonzalez and P Wintz, “Digital Image Processing”, second edition, Addison-

Wesley, 1987
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12. RC Gonzalez and RE Woods, “Digital Image Processing”, third edition, Addison-
Wesley, 1993

13. RJ Marks II, Introduction to Shannon Sampling and Interpolation Theory, Springer-
Verlag, New York, 1991

14. RJ Marks II, Advanced Topics in Shannon Sampling and Interpolation Theory,
Springer-Verlag, New York, 1993

3.  COMMON MR IMAGE ARTIFACTS
The Fourier transform and the sampling theory can help us to understand some common
artifacts appeared in MR imaging process.

Gibbs Ringing Artifacts:
The Gibbs ringing artifact, a common image distortion that exists in Fourier images,
manifests itself as spurious ringing around sharp edges, as illustrated in Fig 3.1. This is a
result of truncating the Fourier spectrum due to finite sampling or missing of high-
frequency data.

Fig 3.1 Gibbs ringing artifacts in Fourier reconstructions. Notice the ringing pattern as a
function of the number of data points used in the reconstruction [2].

Aliasing Artifacts:
When the sampling rate is less than the Nyquist rate, perfect reconstruction is not
possible and the resulting error creates aliasing artifacts, where replications of the object
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overlap (Fig. 3.2). The appearance of aliasing artifacts is dependent on how sampling is
done. Aliasing artifacts become less structured and thus less obvious for non-uniform
sampling. This property is sometimes utilized to reduce the aliasing artifacts when signal
undersampling cannot be avoided.

Fig 3.2 Aliasing artifacts due to undersampling along the vertical direction [2]

Motion artifacts:
In practice, the object being imaged is not usually stationary during the data acquisition
period. As a consequence, image artifacts result. The most problematic physiologic
motions  include blood flow, respiratory motion, cardiac motion, and gross movements of
the body. Common motion artifacts are image blurring and ghost (or misregistration) as
shown in Fig 3.3.

Fig 3.3 Cross-sectional image of the lower abdomen with motion artifacts [2].

Further reading
15. RM Henkelman and MJ Bronskill, “Artifacts in magnetic resonance imaging”, Rev.

Magn. Reson. Med., vol  2, pp1-126, 1987
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16. S Amartur and EM Haacke, “Modified iterative model based on data extrapolation
method to reduce Gibbs ringing,” J. Magn. Res. Imag., vol 1 pp307-317, 1991

17. D Atkinson, DLG Hill, PN Stoyle, PE Summers, and SF Keevil, “Automatic
correction of motion artifacts in magnetic resonance images using an entropy focus
criterion,” IEEE Trans. Med. Imag. vol 16, pp903-910, 1997

18. JL Duerk and OP Simonetti, “Review of MRI gradient waveform design methods
with application in the study of motion”, Concepts Magn. Reson., vol 5, No 2, pp105-
122, 1993

19. J Jackson, C Meyer, D Nishimura, and A Macovski, “Selection of a convolution
function for Fourier inversion using gridding”, IEEE Trans. Med. Imag. Vol MI-10,
pp473-478, 1991

20. V Rasche, R Proksa, R Sinkus, P Bornert, and H Eggers, “Resampling of data
between arbitrary grids using convolution interpolation,” IEEE Trans. Med. Imag.,
vol 18, pp. 385-392, 1999

21. QS Xiang and RM Henkelman, “K-space description for MR imaging of dynamic
objects,” Magn. Reson. Med., vol 29, pp. 422-428, 1993

22. QS Xiang, MJ Bronskill, and RM Henkelman, “Two-point interference method for
suppression of ghost artifact due to motion,” J. Magn. Reson. Imag. Vol. 5, pp. 529-
534, 1995

23. X Zhou, ZP Liang, GP Cofer, CF Beaulieu, SA Suddarth, and GA Johnson,
“Reduction of ringing and blurring artifacts in fast spin-echo imaging,” J. Magn.
Reson. Imag., vol 3, pp. 803-807, 1993

4. COMPUTER-AIDED DIAGNOSTIC PROCESSING
Medical image processing deals with the development of problem-specific approaches to
the enhancement of raw medical image data for the purposes of selective visualization as
well as further analysis. There are many topics in medical image processing: some
emphasize general applicable theory and some focus on specific applications. A
comprehensive overview on a broader range of topics in medical image processing
appears in [24]. Here, we mostly focus on image segmentation and multi-spectral
analysis.

Image segmentation:
Image segmentation is defined as a partitioning of an image into regions that are
meaningful for a specific task; it is a labeling problem. This may, for instance, involve
the detection of a brain tumor from MR or CT images (Fig. 4.1). Segmentation is one of
the first steps leading to image analysis and interpretation. The goal is easy to state, but
difficult to achieve accurately.

Fig. 4.1 A 3D rendering of segmented
skin surface (pink), brain tissue
(brown), major blood vessels (navy
blue), and a tumor (green) from MRI
volume. This allows surgeons to
visualize the actual location and to
plan and simulate specific procedures.
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Image segmentation approaches can be classified according to both the features
and the type of techniques used. Features include pixel intensities, edge information, and
texture, etc. Techniques based on these features can be broadly classified into structural
and statistical methods.

Structural methods are based on the spatial properties of the image, such as edges
and regions. Various edge detection algorithms have been applied to extract boundaries
between different brain tissues [26-28]. However such algorithms are sensitive to artifacts
and noise. Region growing [29,30] is another popular structural technique. In this
approach, one begins by dividing an image into small regions, which can be considered
as ``seeds''. Then, all boundaries between adjacent regions are examined. Strong
boundaries (in terms of certain specific properties) are kept, while weak boundaries are
rejected and the adjacent regions merged. The process is carried out iteratively until no
boundaries are weak enough to be rejected. However, the performance of the method
depends on seed selection and whether the regions are well defined, and therefore is also
not considered robust.

Starting from a totally different viewpoint, statistical methods label pixels
according to probability values, which are determined based on the intensity distribution
of the image.

Gray-level thresholding is the simplest, yet often effective, segmentation method.
In  this approach, structures in the image are assigned a label by comparing their gray-
level value to one or more intensity thresholds. A single threshold serves to segment the
image into only two regions, a background and a foreground, as illustrated in Fig. 4.2.
Sometimes the task of selecting a threshold is quite easy, when there is a clear difference
between the gray-levels of the objects we wish to segment.

Fig 4.2 Segmenting a simple image by a single threshold [25].
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However, things are not normally so simple. Inhomogeneity in the imaging
equipment and the partial-volume effect (multiple tissue class occupation within a voxel)
give rise to a smoothly varying, non-linear gain field. While the human visual system
easily compensates for this field, the gain can perturb the histogram distributions, causing
significant overlaps between intensity peaks and thus leading to substantial
misclassification in traditional intensity based classification methods.

 Hence, there are more sophisticated statistical approaches [31-39] relying on
certain assumptions or models of the probability distribution function of the image
intensities and its associated class labels, which can both be considered random variables.
Let C and Y be two random variables for the class label and the pixel intensity,
respectively, and c and y be typical instances. The class-conditional density function is
p(y|c). Statistical approaches attempt to solve the problem of estimating the associated
class label c, given only the intensity y for each pixel. Such an estimation problem is
necessarily formulated from an established criterion. Maximum a posteriori (MAP) or
maximum likelihood (ML) principles are two such examples. Many statistical
segmentation methods differ in terms of models of p(y). Depending on whether a specific
functional form for the density model is assumed, a statistical approach can either be
parametric or non-parametric. Both have been widely used in segmentation of brain MR
images.

In non-parametric methods, the density model p(y) relies entirely on the data
itself, i.e. no prior assumption is made about the functional form of the distribution but a
large number of correctly labeled training points are required in advance.

One of the most widely used non-parametric methods is the K-Nearest-Neighbors
(KNN) rule classification. First fix K, the number of nearest neighbors to find in the
neighborhood of any unlabelled intensity y. The KNN involves finding a neighborhood
around the point y that contains K points independent of their class, and then assigning y
to the class having the largest number of representatives inside the neighborhood [38,
39]. When K = 1, it becomes the nearest-neighbor rule, which simply assigns a point y to
the same class as that of the nearest point from the training set.

Non-parametric methods are adaptive, but suffer from the difficulty of obtaining a
large number of training points, which can be tedious and a heavy burden even for
experienced people. Clearly, such methods are not fully automatic.

Unlike non-parametric approaches, parametric approaches rely on an explicit
functional form of the intensity density function. For instance, the intensity density
function can be modeled by a sum of Gaussian distributions, each of which models an
intensity distribution of each class. Here, means and variances of Gaussian distributions
becomes parameters of the model to be determined.

Maximum likelibood (ML) methods aim at estimating  a set of parameters that
maximize the probability of observing the gray-level distribution. A good method to
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estimate these parameters is to use an Expectation-Maximization (EM) approach, an
iterative technique. Figures 4.3 and 4.4 show examples of results obtained with the EM
algorithm on real MR data.

Fig 4.3 EM algorithm for parameter estimation. The histogram was computed from real
MR data of a brain. The three peaks correspond to cerebral spinal fluid (CSF), gray
matter (GM), and white matter (WM), respectively [24].

    

    

Fig. 4.4 Top to bottom, left to right: Input image and tissue classification generated by
successive iterations of the EM segmentation (WM is brightest, GM is medium grey, and
CSF and air are black). Bottom right is the final segmentation.
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Multi-spectral Analysis:
We have talked about image processing based on one single MR image. However, MRI
data are by nature multi-spectral because their contrast characteristics depend on the
acquisition sequences and their parameters. As an example, Fig 4.5 shows proton density
weighted, T2-weighted, T1-weighted, and gadolinium-DTPA enhanced T1w (GAD)
brain MRI scans of the same multiple sclerosis (MS) patient. Extracting data from multi-
spectral MR exams may provide us additional useful information in disease diagnosis and
treatment assessment [40].

Fig. 4.5 Example of multi-spectral MR images. From left to right: proton density
weighted, T2-weighted, T1-weighted, and gadolinium-DTPA enhanced T1w (GAD)
brain MRI scans of the same MS patient [40].

We aim to improve differentiation of lesions (abnormal tissues) and normal brain
tissues using the information provided by multi-spectral MRI. [40] describes a medical
application of a method used successfully in the past to extract and summarize
information from satellite remote sensing data [41]. The technique acquires multiple co-
registered images, and constructs a “spectrum” for each pixel from its intensity values in
each image, see Fig. 4.6.  Then we can produce synthetic images of "spectral phase" (SP)
relative to a reference tissue, by calculating the angular difference between any pixel
spectrum and that of the reference tissue, as illustrated in Fig. 4.7.  These SP images
allow retrospective suppression of signals in the reference tissue, while improving tissue
contrast between different types of tissues, as shown in Fig 4.8. The additional contrast in
SP images not only may aid the quantification and analysis of lesion activity in MR
exams of MS patients, but also can be further used to improve segmentation performance.

Multi-spectral analysis has a great potential in medical image analysis, tissue
segmentation and classifications [42-45].

There are many other exciting research projects going on worldwide. You may do
a google search to find out more. Also, you may refer to [46] for on-going research in the
Seaman Family MR Research Centre in Calgary, Alberta.

PDw T2w T1w GAD
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Fig 4.6 Each image pixel is associated with a spectral vector constructed from its
intensities in each image, where all images are co-registered.

CSF

White Matter

Fig 4.7 For each pixel, calculate the angle from this vector to the reference vector.
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PDw T2w

T1w CSF-SP

Fig 4.8 Magnified views of a large MS lesion in an MS patient. a) through c) are the peri-
ventricular lesion in the PDw, T2w and T1w images, respectively. d) shows the same
lesion in the derived spectral-phase image relative to CSF (CSF-SP) [40].

Further Reading:
24. M Sonka, JM Fitzpatrick, Handbook of Medical Imaging: volume 2 Medical Image

Processing and Analysis, SPIE, Washington, 2000
25. Segmentation, http://www.redbrick.dcu.ie/~bolsh/thesis/node25.htm
26. M Bomans, KH Hohne, LA Kramer, and JM Fletcher, “3-D segmentation of MR

images of the head for 3-D display,” IEEE Trans. Med. Imag., 18(1):25-34, 1990
27. LP Clarke, RP Velthuizen, MA Camacho, JJ Heine, M Vaidyanathan, LO Hall, RW

Thatcher, ML Silbiger, “MRI segmentation: methods and applications”, Mag. Reson.
Imag., vol 13, no. 3 pp. 343-368, 1995

28. S Dellepiane, “Image segmentation: Errors, sensitivity, and uncertainty,” Proc. 13th
IEEE-Eng. Med. Bio. Society, vol. 13, pp. 253-254, 1991

29. CR Brice and CL Fennema, “Scene analysis using regions,” Artificial Intelligence,
vol. 1, No. 3, pp. 205-226, 1970

30. SC Zhu and A Yuille, “Region competition: Unifying snakes, region growing, and
Bayes/MDL for multi-band image segmentation,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 18, No. 9, pp. 884-900, 1996

31. P Taylor, “Invited review: computer aids for decision-making in diagnostic
radiology—a literature review,” Brit. J. Radiol., vol. 68, pp. 945—957, 1995

32. CA Glasbey, “An analysis of histogram-based thresholding algorithms,”
CVGIP—Graphics Models and Image Processing, vol. 55, pp. 532—537, 1993

33. P Sahoo, S Soltani, A Wong, Y Chen, “Survey of thresholding techniques,”
Computer Vision, Graphics and Image Processing, vol 41, No.2 pp.233-260, 1988

a b

c d
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34. A Dempster, N Laird, D Rubin, “Maximum likelihood from incomplete data via the
EM algorithm,” J. Royal Statistical Society, series B, vol. 39, no. 1, pp.1-38, 1977

35. WM Wells III, WEL Grimson, R Kikinis, FA Jolesz, “Adaptive segmentation of MRI
data,” IEEE Trans. On Medical Imaging, vol. 15, pp.429-442, Aug. 1996

36. R Guillemaud, M Brady, “Estimating the bias field of MR images,” IEEE Trans. On
Med. Imag., vol 16, pp. 238-251, 1997

37. KV Leemput, F Maes, D Vandermeulen, P Suetens, “Automated model-based bias
field correction of MR images of the brain,” IEEE Trans. Med. Imag. 1999

38. JC Bezdek, LO Hall, LP Clarke, “Review of MR image segmentation techniques
using pattern recognition,” Medical Physics, vol. 20, No. 4 pp.1033-1048, 1993

39. JR Mitchell, SJ Karlik, DH Lee, A Fenster, “Computer-assisted identification and
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5. VALIDATION OF ALGORITHMS
Receiver operating characteristic (ROC) analysis is a common means of comparing
precision, accuracy, and efficiency of various algorithms. ROC analysis can be effective
for assessing how good a test is at discrimination between patients with the disease from
those without the disease. Here, we can extend it to evaluate how good an algorithm (for
instance, segmentation and classification algorithms) is for differentiating abnormal
tissue from normal tissues. To keep it simple, we will use a diseased population as an
example to explain ROC analysis.

 Fig. 5.1 graphically illustrates the prevalence of disease and introduces the
concepts of true negative (TN), false negative (FN), false positive (FP) and true positive
(TP).
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Fig. 5.1 This shows the overlap with FP and FN results when the prevalence in the
population studied is less than 50%, i.e., there are a fewer diseased than normal people
[47].

For any cutoff value of the diagnostic criterion used to separate diseased from
non-diseased populations, we can express the outcome as a two by two matrix:

TRUTH
 P                          N

TP FP

T
E

ST
N

   
   

   
   

   
 P

FN TN

The accuracy of a test is defined as

  

† 

Accuracy =
TP + TN

TP +FP + TN+FN
¥100%

It is a global measure of accuracy and doesn’t distinguish between positives and
negatives. It may be misleading and is rarely of any value.

The sensitivity of a test is the measurement referred to as “the proportion of people with
the disease who will be detected by the test”, namely,

  

† 

Sensitivity =
TP

TP +FN
¥100%
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The specificity of a test is the measurement referred to as “the proportion of people
without the disease who will be confirmed to be free of the disease by the test”, namely,

  

† 

Specificity =
TN

TN+FP
¥100%

When the cutoff point, i.e. threshold, is changed, sensitivity and specificity of the
test vary too. High sensitivity picks up most of the abnormals and is good for excluding
disease, screening, associated with missing the disease. High specificity picks up of the
normals and is good for confirming the presence of disease and cases when there is high
risk associated with treating unnecessary. A perfect test is both highly sensitive and
highly specific.

A useful measure of the performance of a diagnostic test is the receiver operating
characteristic (ROC) curve because it measures the sensitivities and specificities over a
wide range of thresholds. These curves will demonstrate graphically how the sensitivity
and the specificity change when the diagnostic criterion is relaxed or strict.
Conventionally, levels of likelihood of disease being present are divided into five
categories: 0, definitely normal; 1, probably normal; 2, possibly abnormal; 3, probably
abnormal; 4, definitely abnormal.

The evaluation of a test will use these different levels of likelihood included in a
report. From these data the ROC curves can be constructed for each test to express the
performance of the test quantitatively. It is plotted in the ROC space, i.e. sensitivity vs. (1
- specificity), or, TP ratio vs. FP ratio, as shown in Fig. 5.2.  These curves can be used to
evaluate the overall performance of different tests (Fig. 5.3).

Fig. 5.2 An ROC curve from an imaging procedure with five level of diagnostic
probability [47].
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Fig. 5.3 Four theoretical ROC curves showing test performance from perfect (B) to
random (A). C and D are typical for many imaging procedure [47].

The performance of the tests can be assessed by a single value, commonly the
area below the curve denoted as AZ. The closer to 1.0 the AZ, the better the test
performance. However, the AZ measure may not be enough to distinguish ROC curves
that cross over as shown in Fig. 5.4.

Fig. 5.4 An example of an ROC curve when the areas are similar but performance differs
in different areas of the curve [47].

Conventional ROC analysis is strictly applicable to binary decision, abnormal or
normal. Often clinical tasks does not fit binary model. For example, lesion segmentation
reports contain location information (lesions may occur in multiple locations) as well as
the binary diagnosis.  To overcome this limitation, there are variants of ROC analysis in
which location information is considered. In free-response ROC (FROC) analysis [53-56]
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the reader rates all locations on an image perceived as being suspicious. That is, for each
image, the reader could yield zero or more ratings corresponding to these locations, and
each image could contain zero (i.e., normal) or more lesions (i.e. abnormal).
Localizations within a clinically acceptable distance from a true lesion are scored as TP
events, and all other events are scored as FP events.  
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6. SUMMARY
We hope that this session may help you learn the fundamentals of medical image
processing, experience it as a plastic blend of science and art, and most importantly
understand the ultimate goal in medical image processing--helping patients.


