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We study subsystems of the N-body problem,
and give an analytic proof of the existence of
hyperbolic periodic orbits which realize certain
symbolic sequences of rotations and oscilla-
tions in the isosceles three body problem. The
Maslov index of the orbits in the reduced space
is used to verify hyperbolicity of the minimizing
periodic curves in the phase space.-

The N-body problem configurationr = (ry,... ,ry)
describes spatial positions of N masses myq, ... , M N
where r; € R3. Interaction between the masses

iIs determined by the Newtonian potential func-
tion V(r) = - ¥, ” rJ“ on the set of non-
collision conﬁguratlons (where r; & r;, i # j).
The hamiltonian and equations of motion:
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The configuration manifold modulo translations

M = {I’= (r1,-..,rN)| D myr; = 0,15 # 75, ’i#j}-
(2)

Angular momentum: J = YV, x p... The
angular momentum level set J~1(¢) is invari-
ant under the flow, and the reduced space
J-1(¢)/G;, where G, = SO(2), c # 0 is the
subgroup of SO(3) which fixes J~1(¢), is a
symplectic space equipped with the flow of the
reduced Hamiltonian vector field.

Relative Equilibria: qq is a central configuration
if go is a critical point of U(q) restricted to the
level set I~1(3), where the moment of inertia

N
I(q) = > mg(ri,mi) =r1°.

Solutions to the N-body equations
q(t) = a(t)go, a(t) €C, geM

__a Ulg) _ __a U(go)
a]> I(g0) o r2




Variational properties: The action functional
for absolutely continuous T-periodic ¢(t) C M

Ar(q) = /OTZ !

2m;
Since the action Ar(gn) < B < oo where ¢, € A
tends to collision (Sundman 1908), collision
curve on the boundary of the functional space
A may provide the minimizing loop.

Iel? +U@d:,  (3)

Kepler problem: Gordon found that for fixed
period T, the minimizing solutions are arranged
in families of ellipses, parmeterized by eccen-
tricity e, including the degenerate ellipse when
eccentricity e = 1 (homothetic collision-ejection
path). ’

For the N-body problem, the action of the

paths q(t) = a(t)qg can be determined the same
as uncoupled Keplerian orbits,

T
Ar(a®a0) = ¢ [ 202 4 D0,
= 3(2m/3 (U(e0)) > 7113,

N
Ul = U ({%{)\ )




The isosceles three body problem can be
described as the special motions of the three
body problem whose triangular configurations
always describe an isosceles triangle (Wintner
(1941)). It is known that this can only occur if
two of the masses are the same, and the third
mass lies on the symmetry axis described by
the binary pair.

Configurations of the isosceles problem require
simple constraints: we shall assume that m; =
mo = m, ma3 arbitrary,

Miso = {q = (r1,70,73) |75 E 7ri, q constraihts}.

Zmiri
<riy-—rp,ez3 >
< (7‘1 +T2)7ei >

I
O OO

Restrict the potential V to the three dimesional
manifold Mjso. When all three masses lie in the
horizontal plane, the third mass must be at
the origin and the three masses are collinear.
The set of collinear configurations S is two
dimensional.



Z~» symmetry across the plane of collinear con-
figurations & which leaves the potential invari-
ant. We can lift o to T*Mjsc as a symplectic
svmmetry of H, namely

g . MiSO — MiSO7 Z(qap) — (UQ7UP)'

Cylindrical coordinates (r,0,z) on Miso, Where
z denotes the vertical height of the mass ms
above the horizontal plane, and (r,0) denotes
the horizontal position of mass mi. The sym-
metry o takes (r,0,z) — (r,0,—2). An elemen-
tary argument shows that orbits which cross
this plane orthogonally are symmetric with re-
spect to o. |

Miso, has an SO(2) action which rotates the
binary pair around the fixed symmetry axis and
leaves V invariant,

e¥q = (erq,ero,r3)

. The angular momentum of the system, is a
consequence of this action. The rotation ac-
tion e is also lifted as a diagonal symplectic



In cylindrical coordinates, the Hamiltonian is

Ho— PP Po ps
4m = 4mr? 2m3(52 + 1)
2
m 2mm
4+ — . 3

2r \/r2+z2(1 ——279”%)2 |

The reduced space J=1(¢)/SO(2) has symplec-
tic structure, and reduced Hamiltonian vector
field. Substituting pg = ¢ in H gives H, =
H(r,0,z,pr,c,pz) ... and corresponding reduced
Hamiltonian vector field Xg_on T*(Miso/SO(2)).

Let v = (q(t),p(t)) denote periodic orbit.
Jacobi field along q(t): variation of the config-
uration £(t) which together with the variation
in momenta n(t), satisfies the equations

-C-l—g-’é:m.n- ——Z 82U
dt Y dt (9q28q‘7




. /2, m3=0.1
min

Pa=4n, h=h
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Projection of the reduced space into the re-
duced configuration space -

m:J71(c)/80(2) — Miso/SO(2)
L e T sore) 1= latmu,
The Maslov cycle is the locus of points 2 C £
where dr|p, is singular. The Maslov index is a
generator for the cohomology class on closed
curves of Lagrangian planes, and measures the

winding number of this curve in the plane of
variations transverse to the flow.

We Consider the nonclosed Lagrangian sub-
spaces of Jacobi fields (£, n) which are tangent
everywhere to H;1(h) within J71(c)/S0O(2).

Every two dimensional invariant Lagrangian curve
which is tangent to H;1(h) includes the flow
direction Xy and one transverse Jacobi field,

dH:((£(2),n(t)) =0,

At = span ((&(t),n(t)), Xg.(2(1))).



A focal point of the Lagrangian plane g is
the value t = tg, where dm : A, %@150/50(2)>
is singular. Lagrangian singularities along -y
correspond to the vanishing of the determinant

£2(to) pz(to)

where (&, €,) denotes the reduced configura-
tion component of a reduced variational vector

field along (q(t),p(t)).

D(to) — det |: &r(tO) Pr(tO) } =0, (4)

Theorem 1. If v is a nondegenerate periodic
orbit of Xg,, and iy = 0 (mod 2), then P is
hyperbolic Without'reflection, where P is the
reduced Poincaré map.



n, and a perturbation, P e=4ﬂ, h=5hmin/8, m=1, m3=0.1
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We will look for symmetric solutions of the
equations of motion. Consider the fixed time
variational problem |

Ap@ = [ Yo

AR () inf Ar(q),

iSO

N?+U(r) dt,

Niso = {a € HY([0,T], Miso) | o(T) = o' q(0) }.

T he function space Ajso contains certain paths
which execute rotations and oscillations about
the fixed point plane S. ATSO is coercive on
Niso, USINg the boundary conditions given. If
q € Nigo tends to oo, then the length [ of g will
also tend to co. The solution of the variational
problem exists by virtue of Tonelli’s theorem.

The following inequality is necessary for non-
collision (true for all masses)

m2 + 4mms m =+ 2m3

2m + m3

< <m2 - 2mm3)

MS ' 10



Theorem 2. A minimizing solution is collision
free on the interval 0 < t < T, for all choices
of masses m, ms.

Proof. The argument rests on comparing the
collision-ejection homothetic paths which also
satisfy the boundary conditions of Ajso, for three
body central configuration.

Notice that collinear collision, with a symmet-
ric congruent ejection path rotated by 2x/3,
belongs to Ajso Since o =1d on S.

Symmetric homothetic equalateral paths will
also belong to Ajsg, provided that we insure
that the congruent ejection path is rotated by
e'27/3 50 as to satisfy the conditions of Aig.

The proof proceeds by comparing the collinear
collision-ejection path, with the action of the
action of % the uniformly rotating collinear rela-
tive equilibrium having period 37T'. The relative
equilibrium path has smaller action.

11



Next, we compare the relative equilibrium with
the symmetric homothetic equalateral path...

Neither the collinear homothetic, nor the equalat-
eral homothetic path in Ao provides a global
minimizer for the action.

The relative equilibrium solution is not mini-
mizing ....

Theorem 3. The solution q(t) to the varia-
t/ona/ problem may be extended SO as to sat-
isfy the relation q(t+T) = o€’ 7 q(t) The cor-
responding momentum p(t) satisfies the same
symmetry p(t +T) = aeig?»?zp(t). Together, the
pair (q(t),p(t)) may be extended to a 6T peri-
odic orbit of the Hamiltonian vector field X g
for isosceles Hamiltonian which undergoes two
full rotations and six oscillations in each period,
and which is not the collinear relative equilib-
rium in S.

12



For given integers (M,N) we can study the
more general variational problem

A2@ =[5 S lon )2 + UGas

sz'

AFO(z) = inf Ap(q),

(M,N)

Ny = {a € H(00.71, Miso) | (7) = oe*Hq(0) ).

Theorem 4. The solution q(t) to the varia-
tional problem is collision free on the interval
[0, T] provided that the inequality M, < NU,.
This occurs in the equal mass case, provided
that M < 3—5‘/—§N, and in the case when mz = 0
when M < N. The solution q(t) may be ex-

‘tended so as to satisfy the condition q(t+T) =
2MT

oe' N q(t), and together with p(t) gives a NT-
periodic integral curve of in case N is even,

and a 2NT-periodic integral curve in case N s
odd.



Theorem 5. Theo-symmetric orbit which ex-
tends the solution q(t) to the variational prob-
lem (M,N) is unstable, and when projected to
reduced space, is hyperbolic whenever nonde-
generate.

We sketch the idea of the proof.

The functional and its differentials evaluated
in the direction ¢ ¢ Ty N, vy @long a critical
curve q(t) are

Af°(q) = / >
lSO(Q) & = Z(pmagzﬂ

|1° + U(r)dt,

+ / Z(- prz+—>§z>dt
52AISO<q)(€,§) — Z<77Z7§z>|0
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We focus on the Jacobi fields £(¢) which sat-
isfy the boundary relation &(T) = ae"'g%ig(O).
The Jacobi fields (&,n7) may be projected to the
reduced space J~1(¢)/S0(2).

An essential component of the second varia-
tion, for Jacobi fields in Ty)y N, vy Which to-
gether with the conjugate variations n(t) whose
projections are everywhere tangent to the en-
ergy surface H;1(h) c J-1(¢)/S0(2) .

Now we study the reduced Lagrangian curve
A¢ of reduced energy-momentum tangent vari-
ations

Ao = {(£(0),n(0))[&(T) = 0€(0), dH(£(0),n(0)) = ¢
Evidently, the subspace AE‘) IS not empty, since
Xp,(¢(0),p(0)) € A5 |
Lemma 1. Ifthe periodic integral curve (q(t), p(t))
is nondegenerate on the reduced energy-momentum
manifold H=1(c) within J=1(¢c)/SO(2), then 2§

is Lagrangian.

14



The second order necessary conditions in terms
of reduced energy-momentum variations, in or-
der that ¢(¢) is a minimizing solution of the
variational problem. |
Proposition 1. If the curve q(t) is a collision-
free solution of the variational problem, and is
nondegenerate as a periodic integral curve of
XH, then A\§ has no focal points in the interval
[0,T], and

w(AD, A7) > 0.

The description of the stability properties of
the minimizing curves now proceeds from 3
comparison of the Lagrange planes A*,A}.
Lemma 2. The Lagrange planes (oP)"AG have
no focal points in the interval 0 < ¢ <T.

oPAg is focal point free on [0,7] so that com-
paring with (073)2)\5 and using the orientation
supplied by the symplectic form w indicates
that (07?)2)\5 is focal point free on the interval
[0,T] as well.

15



Lemma 3. The reduced Lagrange plane )\("5 of
transverse variations is focal point free on the
interval 0 < t < .

Since there is no rotation of the Lagrange planes
Af, we can ask what obstruction there is to pre-
vent this. The answer given in the next Theo-
rem, is that the Poincaré map must have real
invariant subspaces.

Theorem 6. Under the assumptions of Propo-
sition (1) , there are (real) invariant subspaces
for the reduced Poincaré map P2. These sub-
spaces are transverse when §2Ap(q) is non-
degenerate when restricted to the Ssubspace
in the reduced space of tangential variations
Tyw)Nm, Ny Which are also tangent to the re-
duced energy surface H:1(h).

The proof proceeds by examining the iterates
(oP)™A§ of the subspace Ay of tangential Ja-
cobi variations in the reduced energy momen-
tum space H;1(h).

16



No focal points, and the fact that

w((eP)"AG, (aP)"TINE) > 0,

implies that the iterates (6P)"\g must have a
limit subspace 8 = liMp—00(cP)™Af.

‘The subspace g is thereby Lagrangian, and in-
variant for the symplectic map oP. Therefore
this implies that since oP = Po,

oPB = B

PB = of

P28 = Pof
= oPS

It is not difficult to see that the subspace
can be also represented as the forward limit
of the iterates P™ of the vertical space, 8 =
1imp—eo P”Vl(w,p). It follows that B represents
the reduced transverse directions of the stable
manifold of (q,p).

Similarly the unstable manifold a« may be rep-
resented as the limit in backwards time |,

Q= 1iMpyoo PV ] .

17



Finally, to show transversality of the subspaces
B,a we can use the fact that in case (gq,p) is
nondegenerate, w(Ay,0PAE) > 0, by virtue of
Proposition (1). This implies that in the case
of nondegeneracy w(a,8) > 0, which |mplles
transversality. This concludes the proof.



