

Alexander Gorban, **Leicester** with Andrei Zinovyev, **Paris**

Plan of the talk

1. Principal manifolds and elastic maps

- The notion of of principal manifold (PM)
- n Constructing PMs: elastic maps
- Adaptation and grammars

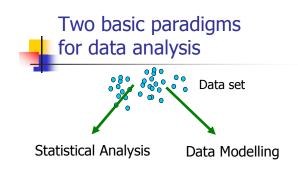
2. Application technique

- Projection and regression
- n Maps and visualization of functions
- 3. Implementation and examples

Plan of the talk

INTRODUCTION

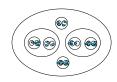
- Two paradigms for data analysis: statistics and modelling
- _n Clustering and K-means
- Self Organizing Maps
- _n PCA and local PCA



Statistical Analysis

- Existence of a Probability Distribution;
- Statistical Hypothesis about Data Generation;
- verification/Falsification of Hypothesises about Hidden Properties of Data Distribution

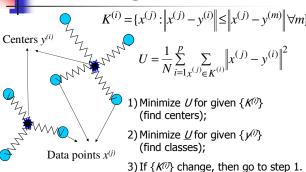
Example: Simplest Clustering



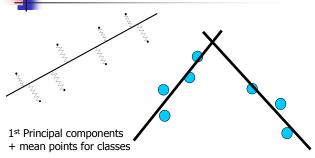
Data Modelling

- n We should find the Best Model for Data description;
- n We know the Universe of Models;
- n We know the Fitting Criteria;
- _n Learning Errors and Generalization Errors analysis for the Model Verification

K-means algorithm



"Centers" can be lines, manifolds,... with the same algorithm



instead of simplest means

PCA and Local PCA

The covariance matrix is positive definite (X^q are datapoints)

$$cov(x_i, x_j) = \frac{1}{p-1} \sum_{q=1}^{p} (X_i^q - \overline{X}_i)(X_j^q - \overline{X}_j)$$

Principal components: eigenvectors of the covariance matrix:

$$e_i, \lambda_i; \lambda_1 \ge \lambda_2 \ge ... \ge 0$$

The local covariance matrix (w is a positive cutting function)

$$\operatorname{cov}_y(x_i, x_j) = \frac{1}{p-1} \sum_{q=1}^p w(y - X^q) (X_i^q - \overline{X}_i) (X_j^q - \overline{X}_j)$$
 The field of principal components: eigenvectors of the local

covariance matrix, e_i(y). Trajectories of these vector-fields present geometry of local data structure.

SOM - Self Organizing Maps

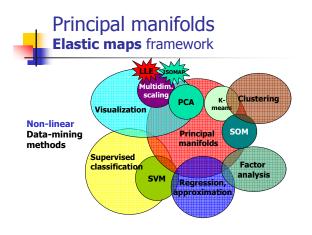
- Set of nodes is a finite metric space with distance
- 0) Map set of nodes into dataspace $N \rightarrow f_0(N)$;
- 1) Select a datapoint X(random);
- 2) Find a nearest $f_i(N)$ ($N=N_X$);
- 3) $f_{i+1}(N) = f_i(N) + w_i(d(N, N_X))(X f_i(N)),$ where $w_i(d)$ ($0 < w_i(d) < 1$) is a decreasing cutting function. The closest node to X is moved the most in the direction of X,

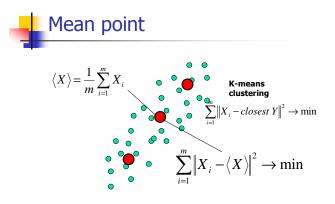
while other nodes are moved by smaller amounts depending on their distance from the closest node in the initial geometry.

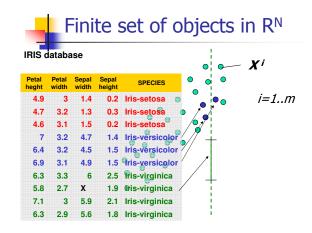
A top secret: the difference between two basic paradigms is not crucial

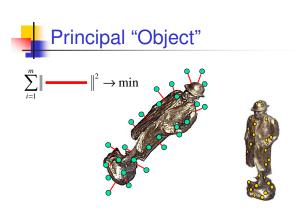
(Almost) Back to Statistics:

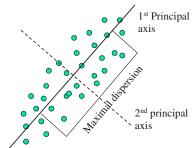
- Quasi-statistics:
- 1) delete one point from the dataset, 2) fitting,
- 3) analysis of the error for the deleted
- The *overfitting* problem and *smoothed* data points (it is very close to nonparametric statistics)

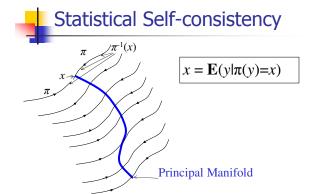


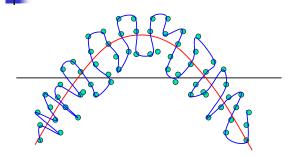








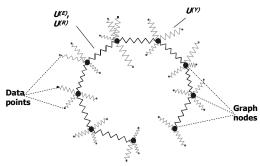




What do we want?

- n Non-linear surface (1D, 2D, 3D ...)
- _n Smooth and not twisted
- n The data model is unknown
- Speed (time linear with Nm)
- _n Uniqueness
- n Fast way to project datapoints

Metaphor of elasticity



Definition of elastic energy

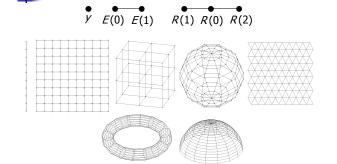
$$U^{(Y)} = \frac{1}{N} \sum_{i=1}^{p} \sum_{x^{(i)} \in K^{(i)}} \left\| X^{j} - y^{(i)} \right\|^{2}$$

$$E(0) E(1) \qquad U^{(E)} = \sum_{i=1}^{s} \lambda_{i} \left\| E^{(i)}(1) - E^{(i)}(0) \right\|^{2}$$

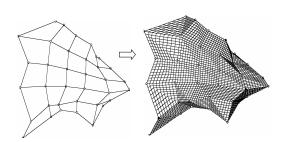
$$R(1) R(0) R(2) \qquad U^{(R)} = \sum_{i=1}^{r} \mu_{i} \left\| R^{(i)}(1) + R^{(i)}(2) - 2R^{(i)}(0) \right\|^{2}$$

$$U = U^{(Y)} + U^{(E)} + U^{(R)} \qquad \lambda_{i} = \lambda_{0}, \quad \mu_{i} = \mu_{0}$$

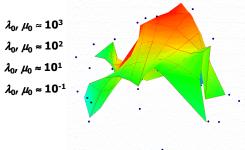
Constructing elastic nets



Elastic manifold



Global minimum and softening



Scaling Rules

For uniform d-dimensional net from the condition of constant energy density we obtain:

$$\lambda_1 = \lambda_2 = \dots = \lambda_s = \lambda(s);$$

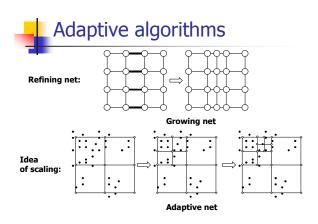
$$\mu_1 = \mu_2 = \dots = \mu_r = \mu(r)$$

$$\lambda = \lambda_0 s \frac{\frac{2-d}{d}}{\mu}$$

$$\mu = \mu_0 r^{\frac{4-d}{d}}$$

$$\mu = \mu_0 r^{\frac{1}{d}}$$

s is number of edges, *r* is number of ribs in a given volume



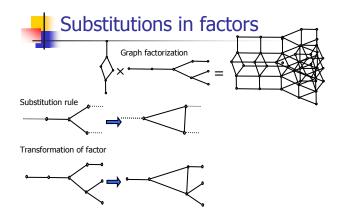
Grammars of Construction

Substitution rules

Examples:

1) For net refining: substitutions of columns and rows

2) For growing nets: substitutions of elementary cells.

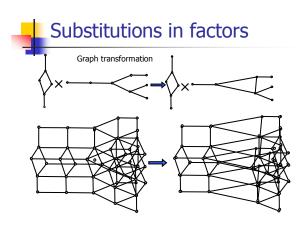


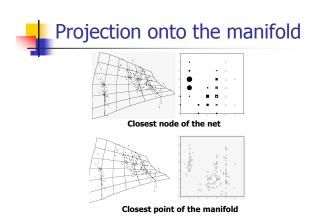
Transformation selection

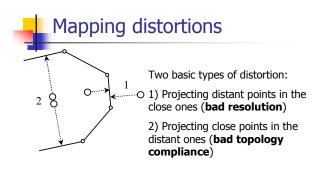
A grammar is a list of elementary graph transformations.

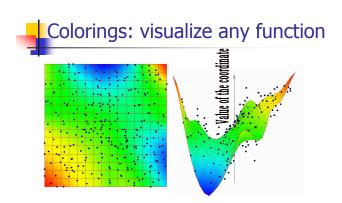
Energetic criterion: we select and apply an elementary applicable transformation that provides the maximal energy decrease (after a fitting step).

The number of operations for this selection should be in order $\,O(N)\,$ or less, where $\,N$ is the number of vertexes

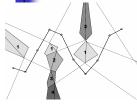






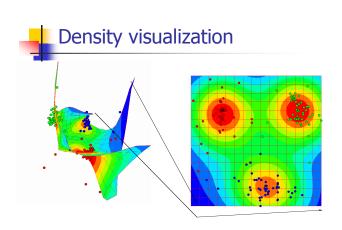


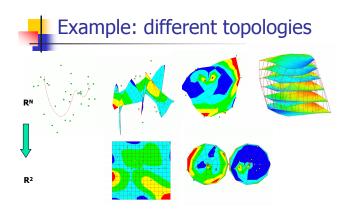
Instability of projection

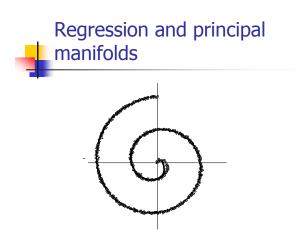


Best Matching Unit (BMU) for a data point is the closest node of the graph, BMU2 is the second-close node. If BMU and BMU2 are not adjacent on the graph, then the data point is *unstable*.

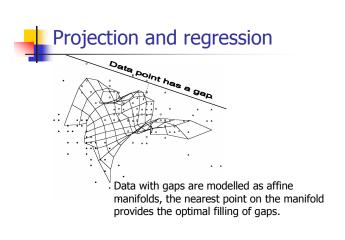
Gray polygons are the areas of instability. Numbers denote the degree of instability, how many nodes separate BMU from BMU2.







VIDAExpert tool and elmap C++ package ***Comparing National Institute of the Comparing National Inst



Iterative error mapping

For a given elastic manifold and a datapoint $\mathbf{x}^{(i)}$ the error vector is

$$x_{err}^{(i)} = x^{(i)} - P(x^{(i)})$$

where P(x) is the projection of data point $x^{(i)}$ onto the manifold.

The errors form a new dataset, and we can construct another map, getting regular model of errors. So we have *the first* map that models the data itself, *the second* map that models errors of the first model, ... and so on. Every point \boldsymbol{x} in the initial data space is modeled by the vector

$$\tilde{x} = P(x) + P_2(x - P(x)) + P_3(x - P(x) - P_2(x - P(x))) + \dots$$

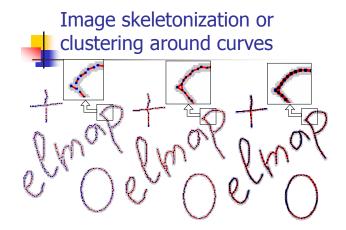
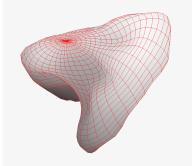


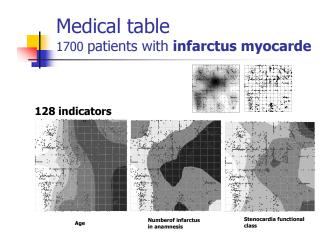
Image skeletonization or clustering around curves

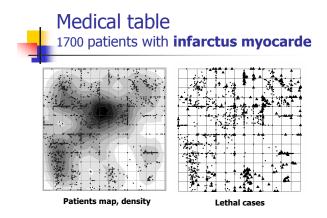
elmor

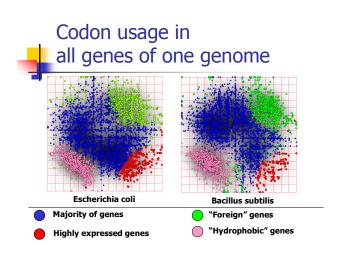
Approximation of molecular surfaces



Application: economical data Density Gross output Profit Growth temp Oil and gas industry Power industry Chemicals and Refiners Engineering industry others

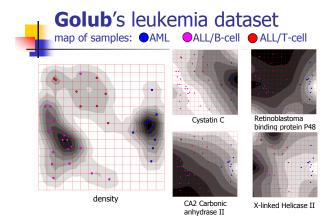






Golub's leukemia dataset 3051 genes, 38 samples (ALL/B-cell,ALL/T-cell,AML) Map of genes: ■vote for ALL ■vote for AML ■used by T.Golub □used by W.Lie ALL sample AML sample

- Principal components and factor analysis http://www.statsoft.com/textbook/stfacan.html http://149.170.199.144/multivar/pca.htm
- Principal curves and surfaces http://www.slac.stanford.edu/pubs/slacreports/slac-r-276.html http://www.iro.umontreal.ca/~kegl/research/pcurves/
- Self Organizing Maps http://www.mlab.uiah.fi/~timo/som/ http://davis.wpi.edu/~matt/courses/soms/
- Elastic maps http://www.ihes.fr/~zinovyev/ http://www.math.le.ac.uk/~ag153/homepage/



- SOM: T. Kohonen, 1981;
- Principal curves: T. Hastie and W. Stuetzle, 1989;
- Elastic maps: A. Gorban, A. Zinovyev, A. Rossiev,
- Polygonal models for principal curves: B. Kégl, 1999;
- Local PCA for orincipal curves construction: J. J. Verbeek, N. Vlassis, and B. Kröse, 2000.

Two of them are Authors

Thank you for your attention!

n Questions?