Plan of the talk
Elastic Maps i—

for Data Analysis 1. Princi|?a| manifo.lds and eléstic maps
* » The notion of of principal manifold (PM)
i » Constructing PMs: elastic maps
» Adaptation and grammars
2. Application technique
Alexander Gorban, Leicester . Projection and regression

with Andrei Zinovyev, Paris » Maps and visualization of functions
3. Implementation and examples

Two basic paradigms

:-’ Plan of the talk for data analysis
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. Two paradigms for data analysis: /o 7
statistics and modelling

» Clustering and K-means - . .
Statistical Analysis Data Modellin
. Self Organizing Maps Y 9

» PCA and local PCA
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:-’ Statistical Analysis

» Existence of a Probability
Distribution;

» Statistical Hypothesis about
Data Generation;

» Verification/Falsification of
Hypothesises about Hidden
Properties of Data Distribution

:’ Data Modelling \\\U;f;;gaz
/\/} of models_ <

—
—

» We should find the Best Model
for Data description;

» We know the Universe of Models;
» We know the Fitting Criteria;

» Learning Errors and Generalization
Errors analysis for the Model
Verification

:-‘ Example: Simplest Clustering
&

;‘ K-means algorithm
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% 1) Minimize U for given {K%}
(find centers);
§WW.\ 2) Minimize U for given {7}
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3) If {K7} change, then go to step 1.



“Centers” can be lines, manifolds,...

’with the same algorithm ‘ PCA and Local PCA
TRE Covariance matrix is positive definite (X¢ are datapoints)
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Principal components: eigenvectors of the covariance matrix:

e i 2 A =20
The local covariance matrix (wis a positive cutting function)
1 2 _ _
COVy(Xi,Xj) =7_1 zW(y— Xq)(qu —Xl)(X;] _Xj)
P—1yg=1

The field of principal components: eigenvectors of the local

covariance matrix, e(y). Trajectories of these vector-fields

instead of simplest means present geometry of local data structure.

cov(xi,xj) =

1st Principal components
+ mean points for classes

A top secret: the difference between

’ SOM - Self Organizing Maps ‘ two basic paradigms is not crucial

= Set of nodes is a finite metric space with distance (Almost) Back to Statistics:
ai, M), . Quasi-statistics:
» 0) Map set of nodes into dataspace N—f,(\N); 1) delete one point from the dataset,
. i . 2) fitting,
L S.elect a datapoint X (random); 3) analysis of the error for the deleted
» 2) Find a nearest () (N=N,); data;
o 3) Fu(N) = H(N) +w(d(N, NJ)X-F(N)), . The overfitting problem and smoothed
where wi(d) (O<w/(d)<1)is a decreasing cutting function. data points (it is very close to non-
The closest node to X'is moved the most in the direction of X, parametric statistics)

while other nodes are moved by smaller amounts depending
on their distance from the closest node in the initial geometry.



Principal manifolds
i Elastic maps framework

Visualization
Non-linear
Data-mining
methods

Supervised
classificatig Factor
analysis

Finite set of objects in RN
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i Principal Component Analysis

15t Principal

N
N axis

i Principal manifold

i Statistical Self-consistency

(x)

”/

x = EQyln(y)=x)

/___Principal Manifold

i What do we want?

» Non-linear surface (1D, 2D, 3D ...)
» Smooth and not twisted

» The data model is unknown

» Speed (time linear with Vm)

» Uniqueness

» Fast way to project datapoints



i Metaphor of elasticity
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i Constructing elastic nets
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i Definition of elastic energy
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i Elastic manifold




!-’ Global minimum and softening

Aor o =103
Aor tip = 102
Aor i =10 :
Ao g =101 |

!-’ Adaptive algorithms

Refining net: —=

Growing net

Idea L .l .
of scaling: = =

Adaptive net

:‘ Scaling Rules

For uniform d-dimensional net from the condition
of constant energy density we obtain:

/11 = /12 =..= /ls = /1(S);

My=p, =..=p, =pu(r)

2-d
A=Ays 4

4-d sis number of edges,
U= Uor d ris number of ribs

in a given volume

Grammars of Construction

Substitution rules

Examples:

1) For net refining: substitutions of
columns and rows

2) For growing nets: substitutions
of elementary cells. —




Transformation of factor

=T

Substltutlons in factors

Graph transformation
X E—b x-—<g
L Ex

Y
.A'A'}‘glb‘f >

Transformation selection

A grammar is a list of elementary graph
transformations.

Energetic criterion: we select and apply
an elementary applicable transformation
that provides the maximal energy
decrease (after a fitting step).

The number of operations for this selection should be in
order O(N) or less, where N is the number of vertexes

Mn onto the manifold

of the net

Closest point of the manifold



i Mapping distortions Colorings: visualize any function

Two basic types of distortion:

O 1) Projecting distant points in the
close ones (bad resolution)

2) Projecting close points in the T
distant ones (bad topology SRMRE
compliance) .8

i Instability of projection i Density visualization

Best Matching Unit (BMU) for a
data point is the closest node of
the graph, BMU2 is the second-
0 close node. If BMU and BMU2
are not adjacent on the graph,
then the data point is unstable.

Gray polygons are the areas of
instability. Numbers denote the
degree of instability, how many
nodes separate BMU from BMU2.



i Example: different topologies

ETY
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RZ
VIDAEXxpert tool and e/map
$£+ package
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Regression and principal

i manifolds

* Projection and regression

Dy s

* . Data with gaps are modelled as affine
manifolds, the nearest point on the manifold
provides the optimal filling of gaps.
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!-’ Iterative error mapping

For a given elastic manifold and a datapoint x” the error vector is

2, 0 = @ _ px)

where P(x)is the projection of data point x? onto the manifold.

The errors form a new dataset, and we can construct another
map, getting regular model of errors. So we have the first map
that models the data itself, the second map that models errors of
the first model, ... and so on. Every point xin the initial data
space is modeled by the vector

X=P(x)+P(x—Px)+B(x—P(x)—B(x—-Px)+...

Image skeletonization or

!-’ clustering around curves

§e
oX
&0

Image skeletonization or
clustering around curves

<

Approximation of molecular

!.‘ surfaces
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i Application: economical data

Density
Y —— ——
e Gross output

Profit

Oil and gas industry
Power industry
Chemicals and Refiners
Engineering industry

others

Medical table
* 1700 patients with infarctus myocarde
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Patients map, density Lethal cases

Medical table
i 1700 patients with infarctus myocarde

Stenocardia functional

Numberof infarctus

in anamnesis class

Codon usage in
$ all genes of one genome

: ‘tm’;f.};i = i L-A:-M. -

Escherichia coli Bacillus subtilis

@ “Foreign” genes
(© “Hydrophobic” genes

@ Majority of genes
@ Highly expressed genes
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3051 genes, 38 samples (ALL/B-cell, ALL/T-cell, AML)

Golub’s leukemia dataset i Useful links

Map of genes: Evote for ALL [llvote for AML [Eused by T.Golub [Jused by W.Lie . Principal components and factor analysis
N T . 2T http://www.statsoft.com/textbook/stfacan.html
- http://149.170.199.144/multivar/pca.htm
e » Principal curves and surfaces
http://www.slac.stanford.edu/pubs/slacreports/slac-r-276.html
http://www.iro.umontreal.ca/~kegl/research/pcurves,
Self Organizing Maps
http://www.mlab.uiah.fi/ ~timo/som/

http://davis.wpi.edu/~matt/courses/soms/

http://www.english.ucsb. K/

it

.
N

Py . Elastic maps
.3 J‘_’&-_;n http://www.ihes.fr/~zinovyev/
LRl LRy http://www.math.le.ac.uk/~ag153/homepage/

ALL sample AML sample

Golub’s leukemia dataset
map of samples: @AML @ALL/B-cell @ ALL/T-cell

* Several names

K-means clustering: MacQueen, 1967;
» SOM: T. Kohonen, 1981;
» Principal curves: T. Hastie and W. Stuetzle, 1989;

‘ Retinoblastoma » Elastic maps: A. Gorban, A. Zinovyev, A. Rossiev,
‘ binding protein P4§ 1 998,

» Polygonal models for principal curves: B. Kégl, 1999;

» Local PCA for orincipal curves construction:
J. J. Verbeek, N. Vlassis, and B. Krése, 2000.

densi i
ty CA2 Carbonic X-linked Helicase II
anhydrase IT
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i Two of them are Authors

* Thank you for your attention!

» Questions?
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