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Collaboration with Michat , Pawel ,and Ryszard Horodeck:
Quantum computers could overpower classical ones only if feasible schemes
of error reduction and correction exist!

See discussion of “chemical computer” which executes factoring algorithm
R. A., quant-ph/0306103

The theory of fault-tolerant quantum computation - threshold results

E. Knill et.al, Introduction to Quantum Error Correction,
quant-ph/0207170, 30 Jul 2002

E. Knill, R. Laflamme and W. Zurek, Resilient quantum computation,
Science, 279, 342 (1998)

D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with
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We consider a simpler problem: maitaining a single uknown qubit
state for an arbitrarily long period of time



Protecting unknown qubit state
in the environment at the temperature T

Remark: Known qubit state ¢ can be protected with exponentially small
error
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A physical model
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Theoretical description

A) Phenomenological

B) Hamiltonian



Phenomenological error model and error corrections
Initial state
pin = | >< Y| ®pa , ¥ — unknown qubit state
Discrete time evolution
I' = AU A 1Up—1 -+ - Milhy
where Uy, p = U, pUT -unitary gates, A,, - error CP maps.

Final state
Pout = Ppin

Error
e=1—-< ’Qb, (T&'Apout)’lf) =

Threshold results

Any quantum state can be efficiently maintained for an arbitrarily long pe-
riod of time at arbitrarily small error € provided the decoherehce rate due to
the interaction with an environment is lower that a certain threshold value.

or in a weaker form

Any quantum state can be efficiently maintained for an arbitrarily long pe-
riod of time at the error € arbitrarily close to the initial error €y provided
the decoherehce rate due to the interaction with an environment is lower
that a certain threshold value.

"Efficiently” - using polynomial in the number of time steps resources i.e.
"ancillas” and gates



Drawbacks of phenomenological models

1) Discrete time model # continuous time model
Example: Pure dephasing

P; =1j ><j| , |j > —basis in Hilbert space
Discrete time

Ap=(1-pp+pY PipP; , > Pi=1I
' j

J
If [Um,PJ] = (0 and [)Oznapj] = 0 then
Pout — UrUi—1 - -Uipin

noise disapears!

Continuous time (h = 1)

%pt = —i[H (t), pt] — '}'Z[Pj: [P il

Noise does not disapear and strongly depends on H (t)'



2) Quantum noise is non-Markovian

Qubit-bath interaction
Hz'm‘, o /\Uk QR

Spectral density
Tr(ps RR(t)) = / R(w)e=tdy,

Strictly Markovian noise
Tr(ps RR(t)) ~ 6(t)

or

A~

R(w) = constant

produces (bistochasic) semigroup satisfying

Ezdzpt = —ilH(t), ] = [0, [o*, pi]

KMS- condition ) ,\
R(—w) = e~ */*8T R(w)

contradicts strict Markov property (”quantum memory” 7Q = h/kgT)

MME in the weak coupling limit (for constant H)

d -3

i 760[03, pe]+

SR (o™, 00+ [07 91, 0™]) + R(=) ([0 o] + [0 ps, o)}

Dissipative part depends on the Hamiltonian!



Hamiltonian model

Single qubit -0, the error correcting n-qubit system A and the bath B.

Interaction Hamiltonian

Hznt:AZZJii@Rg

a=0 k
Spectral density I%gsﬁ (w)
Top B R) = [ REf @) do,
KMS-condition
Ryf (~w) = e7/*T i (w)

Non-decoupling condition for all (relevant) w > 0

[R2P ()] > Y[6apb] > 0 .

Tp = —— — decoherence time

Total Hamiltonian
H(t) = Hoa(t) + Hr + Hins

initial state
p(=7/2) = [ >< Y| ® pa®ps .



Partial results

1) T = oo and Markovian model, i.e. Rﬁfﬁ (w) ~ 0080k

3 n
d ;
apt = —’L[H(t).}, pt} -9 Z Z[O‘g: [Ufm pt:”
k=1 a=0
Define I(p) = logd — S(p) (d- dim of the Hilbert space)

Lemma
I(py) < e *"I(po)

The entropy of the qubit-0 satisfies

S’(pgo)) > log2(1 — e *"(n + 1))

To keep S(pgo)) < € we need af least

€
n(t) Z (1 = @)647t

exponentially large number of ancillas.

Compare with Aharonov et.al. quant-ph/9611028 - constant input of ”fresh
qubits” necessary



2. Error formula in Born approximation

R.A. and M. Horodecks, ,P. Horodecki and R. Horodecki, Phys.Rev. A 65,
062101 (2002)
R.A., Controlled Quantum Open Systems, in Irreversible Quantum Dynam-

ics LNP 622, Springer, Berlin (2003)

Reduced time evolution of pg4

* 2 * A?
I'*(poa) = Uoa (POA + A2®* (poa) — ?{K:‘ POA})

where
A /2,
Upa = Texp(—i Hoa(t) dt)
—7/2
with H = [H,-] and K = ®(1)
Uou=10 U, .

®* - error map is completely positive

o) =3 / . / B (6 =)o (5) poa s o)

The error is given by

€ =1— < Y|Trs (T*(poa)) |t >




Simplified non-ergodic Markovian model

We assume T' = oo and keep only the terms with o). This makes states
commuting with ol invariant and allows ”fresh qubits”.

Then introducing

1
Ag(t)=§®m(a;(t))  @=0;1; 2w

and averaging over an initial qubit-0 state one obtains

n T/2 T/2
Ez;\%fazﬁ(/ a1 - 450200 = [ PO

=) —7/2 —7/2
F()>0 , F(—1/2) = F(r/2) = %A%

There exist unitary maps (encodings) U(t) for which F(¢) = 0. But initial
and final errors cannot be avoided. Moreover, F'(t) = 0 for perfect tuning of
all control parameters what is also not possible. As F'(t) > 0 errors cannot
be corrected but only prevented. Non-negative error production- a new

face of the second law 7

F(t)

.
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Thermodynamics of open systems

0-th Law: Return to equlibrium

flim o(t) = pg = Z e PH
I-st Law: Energy conservation
d@ dpy dw
Bo=dQ—dW ., — ="Te(—H{(i —
4 =dQ = B HO)

II-nd Law: Non-negative entropy production

B r)+852 w0 20

?7?7- Law: Information about uknown state cannot be efficiently protected

Any (efficient) action on a single qubit which can be described in Hamil-
tonian terms cannot reduce the error below the value €y depending on the
physical implementation of the qubit and its environment.

Essentially proven by the example of above.

Any (efficient) action on a single qubit which can be described in Hamalto-
nian terms cannot reduce the error below the value eq+ct (for eg+cr << 1)
where T 1s the period of time and c is a strictly positive constant depending

i (Pt

dH (t)
dt

on the physical implementation of the qubit and its environment.

To be proven rigorously.
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