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What we want to implement

U2

|00  |00
|01  |01
|10  |10
|11  ei|11

example:
phase gate

• implement entanglement of two qubits

- Controlled two-body interaction We must design a Hamiltonian

qubits
1 2

V(R)
so that

H  ΔEt |1 1〈1|⊗ |12〈1|

|11 ⊗ |12  ei |11 ⊗ |12

Examples:
Cold collisions in moving potentials: optical lattices (Jaksch et al PRL 1999)
Cold collisions in switching potentials: magnetic microtraps (Calarco et al. PRA 2000)
Dipole-dipole interactions: Rydberg gate (Jaksch et al. PRL 2000) 
Electrostratic interaction: ion microtraps (Cirac and Zoller Nature 2000; Calarco et al. PRA 2001)
Pauli-blocked excitons: spintronics in quantum dots (Calarco et al. PRA 2003)
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Feshbach two-qubit quantum gates
identifying difficulties with quantum gates based on 
qubit/spin-dependent lattice movements

improving on existing gate proposals

a new Feshbach gate based on „adiabatic massage“

qubit as "clock transition": independent of magnetic fields
qubit-independent superlattice (instead of a spin-dependent lattice)
quantum gate based on state dependent Feshbach resonances
enhanced speed due to Feshbach resonance
relaxed addressability requirements
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Present situation
[Jaksch et al. 1999, Bloch et al.  experiment 2003]

sensitive to magnetic fields, but
stable under collisionsAlkali atom

fine
structure

hyperfine
structure

move
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Molecular resonances (optical or magnetic)
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Feshbach resonances

Aβ(B) = Abg

Ã
1 − ∆β

B − Bresβ

!
Scattering length 
close to a resonance
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Coupled-channel CI model [Mies et al. 2000]

Ψβ(t) = |βi
X
v

φv(R)cv(t) + |nβ (t)iφres(R)aβ(t)State

V β
v = 2h̄ν

q√
4v + 3 abgδβ/π

εresβ (B) = sresβ (B −Bres
β )

|βi = |00i, |0xi

|nβ (t)iν
abg ≡ Abg

p
mν/h̄

δβ ≡ ∆βs
res
β /(h̄ν)

ih̄ȧβ = εresβ (B) +
X
v

V β
v cv/

√
2

ih̄ċv = (v + 1/2)h̄νcv + V β
v aβ/

√
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Equations of motion
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Feshbach switching in a spherical trap

Start with the (100 G) Feshbach
resonance state 10 trap units 
above threshold
Switch it suddenly close to 
threshold
Wait ~ 1 trap time (~ µs 
assuming MHz trap)
Switch back
A phase π is accumulated
Fidelity: 0.9996
No state dependence required, 
however difficult atom separation 
with state-independent potential
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Quantum optimal control in a nutshell

Evolve an initial guess 
according to control u

Project onto the goal 
state and evolve back

Evolve forward again 
while updating the 
control pulse

Repeat until 
approaching the goal

¯̄̄
ψ̇(t)

E
= − i

h̄
H(u, t) |ψ(t)i

|χ(T )i ≡ |ψ 0 i hψ0 |ψ(T )i

un+1(t) = un(t) +
2

λ(t)
= hχ(t)| ∂H

∂u
|ψ(t)i
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Nonadiabatic transport in a lattice

State dependence: lattice 
displacement

Non-adiabatic transport in 
optical lattice: simulation with 
realistic potential shape

Fidelity 0.99999 in 1.5 trap 
times through optimal control 
theory
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“Adiabatic-massage” phase gate

|1i|0i|0|0  |0|0
elevator

state independent 
superlattice|0|1  |0|1

|1|0  |1|0

state dependent
Feshbach resonances

|1|1  e i |1|1
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Looking for resonances [Marte et al. 2002]

Feshbach
resonances happen 

when some 
molecular state 

crosses the 
dissociation 

threshold for a 
particular entrance 

channel
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Identifying qubit states

|xi≡ |F = 1, mF = 1i
|1i ≡ |F = 2, mF = 0i|0i ≡ |F = 1, mF = 0iLogical states: 87Rb clock states

Auxiliary state

sres/h = 3.0 MHz/G
Bres
0x = 386 G

Bres
00 = 407 G
∆00 = 16 mG

∆0x = 5.85 mG
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Level scheme
Single atom Two atoms

|00i

|01i |10i

|11i

|0xi

|1xiω ωx

|0i

|1i

|xi
a) b) c)

|n00i|n0xi
∼V 00

∼V 0x

Single-qubit rotation 
via auxiliary state

Single-qubit rotation 
via auxiliary state

Two-qubit gate via 
Feshbach interaction
Two-qubit gate via 

Feshbach interaction
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Massaging the potential
Example: Two-color optical lattice

U(x ,φ) = U⊥(y, z) + U0

h³
1 +

u1 + u2
2

´
cos2(2kx) +

q
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2
³
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σ

2
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u2
u1
+
pπ
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and Qubit 
atomic 
sites

Adiabatic 
transfer by 
barrier 
lowering
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Transport in a two-color optical lattice
Raise abruptly one 
every two wells

Slowly lower the 
barrier and raise it 
again

Transport infidelity 
~ 10-3 in 10 trap 
times with a pulse 
optimized “by 
hands”
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Connection diagram
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a) b) c)The left ground-state atom gets transferred to the right first excited state, 
while the right atom remains in its ground state

The left ground-state atom gets transferred to the right first excited state, 
while the right atom remains in its ground state
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Phase gate via optimal control

Ramping the resonance state 
across threshold

The state |00> is selectively 
affected

A phase p is accumulated over 
one oscillation period

Infidelity ~10-5 in a 20kHz trap 
with anisotropy factor 10
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Summary

Gate “markers”
Single-qubit: 
Two-qubit:

Preparation of task-specific patterns
Relaxing single-qubit addressability requirements

Implementation
Optical lattices
Atom chips

Magnetic
Optical (microlenses; “mirror lattice” on a chip?)

Quantum optimal control is useful for
fast atom transport
efficient entangling operations

A
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