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' What we want to implement

* implement entanglement of two qubits

® example: |00) —  |00)
phase gate 01) —  [o1)
L2 10) —  [10)
I11) — e|11)
- Controlled two-body interaction We must design a Hamiltonian
V®) H = AE(1)[1) (1] ® [1)2(1]
® @ *® @ so that
1 2
qubits 1)1 ® 1), — e¥1); ® [1)2

Examples:

Cold collisions in moving potentials: optical lattices (Jaksch et al PRL 1999)

Cold collisions in switching potentials: magnetic microtraps (Calarco et al. PRA 2000)
Dipole-dipole interactions: Rydberg gate (Jaksch et al. PRL 2000)

Electrostratic interaction: ion microtraps (Cirac and Zoller Nature 2000; Calarco et al. PRA 2001)
Pauli-blocked excitons: spintronics in quantum dots (Calarco et al. PRA 2003)
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‘ Feshbach two-qubit quantum gates

= Identifying difficulties with quantum gates based on
gubit/spin-dependent lattice movements

= Improving on existing gate proposals

= a new Feshbach gate based on ,adiabatic massage*“

v qubit as "clock transition": independent of magnetic fields

v qubit-independent superlattice (instead of a spin-dependent lattice)
v quantum gate based on state dependent Feshbach resonances

v enhanced speed due to Feshbach resonance

v relaxed addressability requirements
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‘ Present situation
[Jaksch et al. 1999, Bloch et al. experiment 2003]
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‘ Molecular resonances (optical or magnetic)
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‘ Feshbach resonances

Rb scattering length (E/k;=1 nK) for a + a collisions
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‘ Coupled-channel CI model . ... 00
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Equations of motion
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Feshbach switching in a spherical trap

Start with the (100 G) Feshbach

resonance state 10 trap units g !
above threshold ol
Switch it suddenly close to £os
threshold 207

1 1
0 0.z 0.4

Wait ~ 1 trap time (~ us
assuming MHz trap) 1

Switch back
A phase r is accumulated =
Fidelity: 0.9996 o5 1’

No state dependence required,
however difficult atom separation
with state-independent potential
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Quantum optimal control in a nutshell

Evolve an initial guess

- i
according to control u () = — 5 H (1) |())

Project onto the goal
state and evolve back Ix(T)) = o) (ol (T))

Evolve forward again
while updating the v, ., (t) = (1) + =S (x(t)] 7~ [(1))
control pulse

Repeat until
approaching the goal
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Nonadiabatic transport 1n a lattice

State dependence: lattice
displacement

Infidelity
> )
IS
/
i 1 1 ]

10° 10 10° 10°

Non-adiabatic transport in
optical lattice: simulation with
realistic potential shape 8,

Time (oscillator units)

Fidelity 0.99999 in 1.5 trap
times through optimal control [ =~ = '
theory -
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“Adiabatic-massage” phase gate

—0O— —0—
= 0)(0) — 10)(0) ) 11
elevator ‘ ‘
state independent
0)1) — [0M1 superlattice
—_ 0)11) — [0)]1)
state dependent
Feshbach resonances
1)1y — e¥|1)1
—_ [DI1) — e¥|1)[1)
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Looking for resonances Marte et al. 20021
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Identitying qubit states

Logical states: 8’Rb clock states [0) = |[F = 1,mr=0) |1)=|F =2,mpr =0)

Auxiliary state lz) = |F =1,mp = 1)
Bres = 407 G
87 ..
Rb ab and bb collisions Aogo = 16 mG
NIST modcl, scan [rom 0 - 1000 G at 0.5 G steps, s-waves only
S | | ]
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‘ Level scheme

Single atom Two atoms
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Massaging the potential

Example: Two-color optical lattice

Ulx,9) = Ui(y,2) + Uo Kl + =2 ;—u2> cos?(2kx) + \/u% + 3 cos (kx + = 5 arctamu—1 -+ %)}

Auxiliary
and Qubit
atomic
sites

|Aio1) 1Qi—1) | As) Qi) | Aig 1) |Qit1)

Adiabatic
transfer by
barrier
lowering
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Transport in a two-color optical lattice

Raise abruptly one

every two wells

Slowly lower the
[ A T R N B
o 1 | y I ]

barrier and raise it
VS T ]
v

again -

Transport infidelity
~103in 10 trap
times with a pulse 1]
optimized “by
hands”

Pulse shape
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‘ Connection diagram
T, T, time T, T,

rrrrrrrrrrrrrrr

Energy (recoil units)
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Phase gate via optimal control

Ramping the resonance state
across threshold

Control

0.8 1

The state |00> is selectively
affected 1

A phase & is accumulated over
one oscillation period

0 02 0.4 0.6 0.8 1

Infidelity ~10-° in a 20kHz trap
with anisotropy factor 10 Zosf

0 02 0.4 0.6 0.8 1
Time (in oscillator units)
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Summary

o Gate “markers”

Single-qubit: [x),

Two-qubit:  |0),.|7),
o Preparation of task-specific patterns

Relaxing single-qubit addressability requirements
o Implementation

Optical lattices

Atom chips

0 Magnetic

0 Optical (microlenses; “mirror lattice” on a chip?)
o Quantum optimal control is useful for

fast atom transport

efficient entangling operations
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