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Abstract

Exact sequences of Feigin-Stoyanovsky'’s type subspaces for affine Lie alge-
bra sl(l + 1, C) lead to systems of recurrence relations for formal characters
of those subspaces. By solving the corresponding system for sl(3, (C)N, we
obtain a new family of character formulas for all Feigin-Stoyanovsky’s type
subspaces at general level.

Affine Lie algebra and standard modules

g=sl{+1,C)
h ~~ a Cartan subalgebra of g

~» simple Lie algebra

R ~~ root system

aq, ..., ap ~ fixed simple roots
T, 0 € R~ fixed root vectors
(-, ) ~ Killing form

Wi, - .., wp ~ fundamental weights (with wg = 0)

g =g®C[t,t71]® Cc @ Cd ~ affine Lie algebra associated to g
c ~ canonical central element

d ~~ degree operator: |d,x ® t"| = nx @ t"

@t y@t"] = [z,y] @ """ + m(x, y)0pm1n.oc ~ Lie product
h =h & Ccp Cd

{ap, a1, ap} C (H9)
Ao, A1, ..., Ay ~ fundamental weights

~~ simple roots

N=koNg+ k1N + -+ kpN\yp, k; € Z4 ~ dominant integral weights
L(A) ~~ standard (integrable highest weight) g-module
k=AMAc)=ky+ k1 + -+ ky~ level of L(A)

v\ ~ a highest weight vector

Feigin-Stoyanovsky’s type subspaces

For fixed minuscule weight w = wy define

F={aeR|{q,w) =1} ={y,7, v lvi=ai+ - +a

This gives us a Z-grading of g:

g=9-1+00+ 01, (1)
with gg = h + Z<a,w>:0 ga, 941 = D geiT Ba, and correspondingly the
Z-grading

6= 8 1+80+ 01,
having denoted gy = go ® Clt,t 1] @ Cec @ Cd, g1 = g1 ® CJt,t71].
Definition 1 For a standard g-module L(\), Feigin-Stoyanouvsky’s type

subspace of L(A\) is
W(A) = Ulg1) - va,

where U(gy) is the universal enveloping algebra of g1.

Combinatorial bases

From Poincaré-Birkhoff-Witt theorem it follows that a Feigin-Stoyanovsky’s
type subspace W (A) is spanned by set of monomial vectors

{o(mopla(m) = ... 2y, (=2 (~1) " - 2y, (<1), 0; € Zgi € T ).

It is an important and interesting problem to reduce the above spanning set
to monomial basis (basis consisting of monomial vectors) of W (A).

Definition 2 For level k standard g-module L(A) with highest weight
N = koMNg+ k1A + - - - + kp\y, we say that a monomial vector x(m)vy =
o Ty (=2) M, (—1)Y e (1) %0y € W(A) is (k, € + 1)-admissible
for A\ if the following inequalities are met:

+a; <ky+---+k; 1=0,....0—1

+ a1y < k, 1€ 2.

initial conditions: ag+ - - -
difference conditions: a; + - - -

Theorem 3 The set of (k,? + 1)-admissible monomial vectors for A is
a basis for W(A).

Inspired by Capparelli, Lepowsky and Milas’s use of intertwining operators
in |2, 3], Primc in [8] obtained an elegant proof of Theorem 3.

Working also on g = sl(£+ 1, C), but in more general setting of an arbitrary
choice for w (allowing it to be any of the fundamental weights wy, ..., wy) -
therefore covering all possible Z-gradings (1), Trupcevi¢ in [9, 10] also uses
intertwining operators to prove linear independence of combinatorial bases
for Feigin-Stoyanovsky’s type subspaces of all standard g-modules at arbi-
trary integer level.

Baranovi¢ in [1] gives a combinatorial description (in terms of difference and
initial conditions) of bases for Feigin-Stoyanovsky’s type subspaces for level
1 standard modules for affine Lie algebra of type Dél), and for a specific
choice of (1). She then extends her method to obtain combinatorial bases in

(1)

the case of level 2 standard modules of affine Lie algebra D,

Exact sequences

We now provide an exposition of new results obtained for g = sl({ + 1,C)
in 6, 7]. For \j .= w; —w;_1,1=1,...,¢, define

i) = Resz_1_<)"i’w’i—1>cz-y(1 ® e, 2),

where ) are Dong-Lepowsky’s level 1 intertwining operators (cf. [4]). For
suitably chosen constants ¢; we have L(A;_1) LUN L(A;), with [y, = vy
Also, |¢] commute with the action of x(7): z(7)[i] = [i]z(7).

Furthermore, we use the so-called simple current operator, a linear bijection
(w] such that

Lro) 25 piag 2 pa L2 pagy B L)
wlvp, = vy, wlop, = 2y (=1vy, =104,

together with important property z(m)w] = [w]z(7 ™), with z(7™) denoting
monomial obtained from x(7) by raising degrees of all factors by one.
Denote by [i]; = 1®(k—j) g i ® 1©0U-1) i =1.... ¢ and g =0,...,¢
linear maps between higher level k standard g-modules that will keep the
above mentioned properties of [i]. Similarly, we use [w]®¥,

Fix K = (ko,...,kg) such that kg +---+ky =k, k; € Z4+,1=0,... L.
Denote W = Wy, 1, 1, = W(A) for A = kgAg + -+ + kgAy, and by v
highest weight vector of L(A).

Define alsom =#{t=0,...,0 —1|k; #0} and fort =0,...,m — 1 set

— {{i07°°°7it—1}|0 S Z.O S S it—l Sg—l,k% 7&07] :Oaat_l}

Now, denote Wy, = Wi, k1 ki +1,..k

ki =Lk a4 ke and by v,

thﬂ Wi, by

the corresponding highest weight vector.
[ntroduce U(g1)—homogeneous mappings ¢t : » . Wy, —

80t|W[t — Z( )ﬁ{]dt'%z}[ ]l-c0+ kg

i, k; 70
il

Theorem 4 The following sequence is exact:

Y0 ¥1 Pm—1
0— Wi, koker, — Z Wp—...— Wp —0.

(-1

Example 5 For Feigin-Stoyanovsky’s type subspaces of level 2 standard
s[(3, C)-modules we have the following family of exact sequences:

0— Woao— Wo00—Wi10—0
0—Woi11—=>Wii10—=Wo20DWi01—Wp11—0
0—=Wi10—=>Wio1—=Wp11—0

0— Wop2— Wpao—Wp11—0
0—=Wip1—=Wo11—Wppo2—0

00— Wopo— Wpo2—0

The proof of Theorem 4 relies on the interplay between initial conditions for
various dominant integral weights at the fixed level k£ (note that difference
conditions are the same for all Feigin-Stoyanovsky’s type subspaces at the
same integer level), and on use of properties for [i] and [w], cf. [6] for details.

Recurrences and characters

We proceed by defining formal character of W = W (A).
Definition 6 For x(m) = ...2(=2)%x,(=1)"1 24 (1) define

degree d( () = Z] OZZ 10 + Dajgje—1 and weight w(x(r)) =
Z] OZz 1 Vi®itj0—1- Formal character of W = W(A) is given by

XW) (21, 2gq) = ) dim W egma i

with W51 denoting the component of W spanned by basis mono-
mial vectors x(m)v of degree m and weight niyy + - - - + nyyy.

As a direct consequence of Theorem 4 we obtain systems of relations con-
necting characters of all Feigin-Stoyanovsky’s type subspaces of arbitrary
integer level k standard sl(¢ 4 1, C)-modules:

ST 0w, zg) = (2)

IeD(K)

= (210)" . (200 X Wik ke ) (1 - - 20659,

where D(K') denotes the set of all I 1 as defined in the previous section.

Example 7 For Feigin-Stoyanovsky’s type subspaces of level 2 standard
s[(3, C)-modules we have the following system of relations:

X(Wa.0.0)(21, 22;.9) = x(W1.1,0)(21, 22, @) + (210)*x(Wo 2.0) (214, 224; q)
X(W11,0)(21, 22:9) = x(Wo,2,0)(21, 22; @) + X(W1,0,1)(21, 225 ¢)—
— x(Wo,1,1)(21, 22, 9) + (219)(220)x (Wo.1,1)(214, 224; q)
X(W1,0,1)(21, 22;9) = X(Won)(z 29:q )JFZlC]X(WllO)(ZlC];ZQQ q)
XWo.2.0)(21, 22:9) = x(Wo1.1)(21, 29: 0) + (220)*X (Wh.0.2) (214, 294 @)
X(Wo1.1)(21,22; ) = x( OO2>(21>Z2 q) + z2gx(W1,0,1)(214, 224; q)
X(Wooz)(%zz q) = x(W2,0,0)(214; 224; q)-

After introducing

X(Wk‘o,...,k’g)(’zl? e 7Z€7 q> — Z AZS: :Z; . Zgje

ny,...,p>0

into (2) we get (for every choice of ny,...,ny > 0)

I| AN1,..-51 ni+-+ng g1—kos...,nu—ko—1
2(3 )(—1>' AT (g) = gt AR SR ) (3)
IeD(K

[t is not hard to prove that the system (3) consists of relations that are recur-

sive and that it has a unique solution (not obvious by itself), cf. Propositions
6.2 and 6.3 in [6].
We were also able to prove the following result:

Theorem 8 Let A = kgAy + k1\1 + kol\g be the highest weight of the
level k standard sl(3, C)-module L(A\). The following formula holds:

X(W (koNg + k1A + kol\9)) (21, 20, q) =

k 2 2
- N Z+N Z+N ZN 7 N17N2
q2it VLt Ny i+ N1iN2 i) Ly ()

ny n2
2 2 G OO @
n1,me>0 Yk Nu—m 11— N1 2 1k 2. k— N2 j—1 2.1
N1 1> >Nl,k20
Z§:1N2,i:n2
No ,z2Ng 120
N N i
1542 pl,iNl,i+p2,iN2,z’H _ Ni;i—Niii1
koylﬁ kz Z q - (1 6p1,i—p1,i+1,—1q ),
p1€ /%14—/62 ?’:1
po~p1

where PL = {(p11,- o) € {0,130 p1i = K1+ ko) and

Py = (p2’1, . >p2,k> ~ p1 means py; = 1 if p1; = 1 and ﬁ{Pl,j|p1,j —
1,7 < i} < kg, and py; = 0 otherwise. Also, Ny = (N11,...,Nyp),

NQ = <N271, c e 7N2,k>7 and Nl,k—l—l = pl,k—I—l = 0.

Example 9 Let us present “linear” terms in the nomanators of charac-

ter formulas for Feigin-Stoyanovsky’s type subspaces of level 2 standard
s[(3, C)-modules:

Ly 0 ) =1

L{\’/}’BNLQ,NQ,hNQ,Q(q) _ qNLQ

L.{\’%,’11,N1,2,N2,1,N2,2(q) qu 1+ Ny + qu 2+No, 2(1 _ qu,l_Nll)
L(])\g,BNm,Nz,th,z(q) _ qu—i—Nm

Lé\}i,71£N1,2,N2,1,N2,2(q> qu 1+ N1o+Noy

Lé\:féle,NLz,Nz,th,z(q) qu 1+ N12+No1+Na o

One should mention that formulas in Theorem 8 represent a complete set
of tull characters for Feigin-Stoyanovsky’s type subspaces of all standard
s[(3, C)-modules, which specially reinstalls but also strengthens the result
obtained in [5].

Theorem is proved by checking that character formulas for W (kgAg+ k1 A1+
kolg) presented in Theorem 8 satisfy the corresponding system (2); more
precisely, by checking that matching Ak;’kl k2<q> satisfy (3), cf. [7].
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