INTRODUCTION TO REAL ANALYTIC GEOMETRY

KRZYSZTOF KURDYKA

1. ANALYTIC FUNCTIONS IN SEVERAL VARIABLES

1.1. Summable families. Let (£,||||) be a normed space over the
field R or C, dim £ < oo. Let {z,}aca be a family (possibly infinite
and even uncountable) of vectors in E. We say that this family is
summable if there is x € E such that
v€>0 EIF6 finitevFECFfinite ||$ - Z Ia” < €.
acl

We write in this case x := ), Zq, clearly z is unique.

We shall say that a collection f, : Z — F, a € A is uniformly sum-
mable if the family {f,(2)}aca is summable for each z € Z, moreover
F, can be chosen independently of z.

Exercise 1.1. —The following conditions are equivalent:

(1) > ,c4 Ta is summable
(2) > pea llzall is summable

(3) SupADF—fim‘te{ZaEF |zall} < o0
Exercise 1.2. —Assume that A = (J;_5 Cp is a disjoint union. Then
Y aca Ta is summable if and only if ¢z 1= T, is summable for
each 8 € B and 4 pcs is summable.

OZEC[-;

1.2. Power series. Let K = RorC, for z = (z1,...,2,) € K" we
denote ||z]| = (|z1]*- -+ + |2]?)'/2.

Let v = (v4,...,v,) € N" we recall standard notations : v! :=
vl (Z) = WL“), for p© < v in the partial order (p < v = p; <
vi,i=1,...,n).

2V =z, 2. Fora € Kand r = (ry,...,7,), r; > 0 we denote
by

Pla,r) :=={2z € K" : |z —a;| <1y, i =1,...,n} the poly-cylinder
centered at a of poly-radius r.

Exercise 1.3. Let 0 = (64,...,6,), |6;| <1, show that

b 1
D AR e )

veN?

A family a, € C, v € N" of complex numbers determines a formal

power series Yy @y 2.
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Lemma 1.4. (Abel’s Lemma) Let a, € C, v € N, be a family of
complex numbers (in other words a power series Y, yn 2" is given,).
Assume that there exists b = (by,...,b,) € C* and M > 0 such
that |a,b”| < M, for all v € N". Then ) a2’ is summable
(we will say that the series converges) for any z € P(0,b|), where

16l = (|b1], - - ., |ba]) € C*.

Proof. Use Exercise 1.3. Note that actually the series converges abso-
lutely.
O

Suppose that we are given a power series » . . a,2”. Put

P(z) = Z a,z”,

{vilvl=1}

veN

this is a homogenous polynomial of degree . Then (for a fixed z € C")
the following conditions are equivalent:

(1) >, enn av2” is summable,
(2) the series

o
Z Z la,z"|
1=0 \ {w:|v|=l}
converges.

Note that the condition (2) above implies the series >~ P/(z) con-
verges absolutely. By the Cauchy rule we obtain that

1

v(2) := limsup Z la,z| | <1,

|—o0
{vilv|=1}

which implies that }_,.,_;, Fi(z) converges absolutely. On the other
hand if y(z) < 1, then again by Cauchy’s rule and the above equivalence
we obtain that ) . a,2” is summable. Thus we have obtained the
following

Corollary 1.5. If a series ), yn a2 is summable for any z € P(0,7),
then v(z) < 1 for any z € P(0,r).

This corollary enables as to associate to any power series the ”sup”
of poly-radiuses r on which we have v < 1. We shall call such a r € R%}
the radius of convergence.

Suppose that we are given a (formal) power series f = >\ ay2”,
let k=1,...,n. Put

of _

3o = g Upy 20" - 2 g
2

k veNn
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Exercise 1.6. If a series f is summable in P(0,r), then g—i is also
1

summable in P(0,7). Hint : use the fact lim; ., [™T = 1.

Definition 1.7. Let U be an open subset of K", and let f : U — K
be a function. We say that f is analytic at ¢ € U if there exist a power
series Y onn G (2 —¢)” (called Taylor expansion of f at c) and r € R%
such that the series is summable in P(c,r) and

f(z) = Z a,(z —c)¥, z € P(c,r).

veNn

We say that f is analytic in U if f is analytic at any point of U. In
the case K = C analytic functions are rather called holomorphic .

Proposition 1.8. Any analytic function f is infinitely many times

K-differentiable, moreover 5o Is again analytic.

Proof. The result is classical for n = 1, so it is enough to use Exercise
1.6. We obtain also

o’ f

5o (c).

vla, =
O

Theorem 1.9. (Principle of analytic continuation) Let U be an open
connected subset of K" and f : U — K an analytic function. Assume
that at some c € U we have %(c) =0, for allv € N*. Then f =0 in
U. In particular if f =0 in an open nonempty V .C U, then f =0 in

U.

Proof. One can join any two points in U by a an arc piecewise parallel
to coordinate axes. So we can apply the classical result in the case
n=1. U

Remark 1.10. It follows that, if U connected and f : U — K is an
analytic function such f # const, then Intf~1(0) = (.

1.3. Separate analyticty.

Theorem 1.11. (Osgood’s lemma) Let U be an open subset of C" and
f:U — C alocally bounded function which is holomorphic with respect
to each variable separately. Then f is holomorphic in U.

Remark 1.12. In fact according to a theorem of Hartogs the assump-
tion that f is locally bounded is superfluous. But the proof of the
Hartogs theorem requires a more advanced tools.

Proof. We may assume that U = P(c,r) is a poly-cylinder. We shall
proceed by the induction on n, the case n = 1 is trivial. We need a
following
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Lemma 1.13. Let Q be an open subset of C and let g : Q2 X [a,b] — C
be a function. Assume that g(z,t) is bounded, holomorphic with respect
to z and contiuous with respect to t. Then the function

b
h(z) = / oz 1)t
s holomorphic in €.

Proof of the lemma. Let us fix ¢ € Q and B := B(c,p) C 2 a disk
such that its boundary 0B C (). Then by the Cauchy formula we may

write
1 g(&,t)
t) = — d B.
g(’Z?) 2WZ/QB£_Z 5726

Hence ¢ is locally uniformly continuous with respect to z, since g is

bounded. Thus g is continuous (i.e. with respect to (z,t)-variables).
So, by Fubini’s theorem, for z € B we can write

e 9(&,t) _ 1 1 ’
h(z)/a (%/335—2d5>dt% 8B£_—z</a 9(5,75)dt>d§

That is h(z) = 5= [5p gg d§, z € B, which proves that h is holomor-
phic. So Lemma 1.13 follows.
To finish the proof of Theorem 1.11 we expand our function f on

P(c,r) C C™ in the series

1) =3 Al — )

which converges absolutely, where 2z’ = (z1,..., 2z,-1). Again thanks to
Cauchy’s formula we have

AI(Z,) _ 1 f(Z/,S)

270 Sy (€ — )T

for any 0 < p < r,. Now, by Lemma 1.13, each function A4;(2’) is holo-
morphic with respect to each variable separately and locally bounded.
Hence by the induction hypothesis each function A;(z’) is actually holo-
morphic. Expanding A;(2’) into a power series we find an expansion of
f into a power series in the poly-cylinder P(c,r). Exercise: check the
convergence.

dg,

g

Remark 1.14. Clearly Osgood’s lemma is false in the real case. For
instance consider f(x,y) = %, f(0,0) = 0. Check that this function
is continuous, analytic with respect to  and y, but not differentiable
at the origin.
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1.4. Cauchy-Riemann equations and consequences. Recall the
classical basic functios about holomorphic functions of 1 variable. Let
f U — C be function, where U is an open subset of C, then the
following conditions are equivalent :

(1) f is holomorphic in U;

(2) f is C-differentiable at any point of U;

(3) f is R-differentiable at any point of a € U and the (real) differ-

ential d, f : C — C is actually C-linear;
(4) f is R-differentiable and the Cauchy -Riemann equations are

satisfied:
ou B ov Ou B ov

dr  dy’ dy O
where u = Re f and v = Im f.
Let us recall that if Y and Z are vector spaces over C then they

carry a unique structure of vector spaces over R. Consider an R-linear
map ¢ : Z — Y, then ¢ is C- linear if and only if

(iz) =1ip(z), z € Z.

Now we can state the main theorem about holomorphic functions in
several variables.

Theorem 1.15. Let f : U — C be function, where U is an open subset
of C". Then f is holomorphic in U if and only if f is continuous (even
merely locally bounded) and %, k=1,...,n (complexes derivatives)
exists at any point in U.

Proof. Apply Osgood’s lemma and use the above results in 1 variable.
O

Definition 1.16. Let U be a an open subset of C", we say that a map
F=(f1,..., fx) : U— C* holomorphic if each f; is holomorphic.

Proposition 1.17. A map F = (f1,..., fx) : U — C* is holomorphic
if and only if F is C' in the real sense and the differential d,f is C-
linear at every a € C.

Proof. This is an immediate consequence of Theorem 1.15. U
Thus we obtain the following basic properties of holomorphic maps.

Corollary 1.18.

(1) If f and g are holomorphic then also , (f +¢),(fg), (§> (where
defined) are holomorphic.

(2) If G and F are holomorphic maps, then G o F' is holomorphic.

(3) If F' is holomorphic such that F~1 exists and d,F is an isomor-
phism for each a € U (the last assumption is actually superflu-
ous), then F~' is holomorphic.

(4) Implicit function theorem holds in the holomorphic setting.
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Note that the explicit and direct estimates in the above statements
for poly-radius of convergence are not obvious at all.

1.5. Real analytic functions. Let W be an open subset in R™ and
f W — R an analytic function. This means that for any a € W
the function f can be expanded in a power series in Pg(a,r) for some
r=r(a) € R}, where

Pr(a,r):={2€R": |zi—a;| <ri,i=1,...,n} =R"N Pc(a,r).

Here Pe(a,r) :={2€C": |z; —a;| <ry, i =1,...,n}.

Proposition 1.19. There exist an open set W c C", W C W and
holomorphic function f : W — C such that ﬂw = f. Moreover (W, f)
are unique in the following sense. If W, C C" is an open set and
E : Wl — C a holomorphic function such that ﬁ|W = f, then there
exists an open set U C C*, W C U and such that ]?1|U = ﬂU.

We shall call the holomorphic function ]?: W —C complexification
of f.

Proof. Put W = ey Pc(a,r(a)). the function f:: Usew f; Here f;
is the holomorphic functionin Pg(a,r(a)) defined by the power series
obtained at a. We leave as exercise details to be checked: that f is
well defined and the second part of the statement. Hint: use analytic
continuation theorem. O

Corollary 1.20. In Corollary 1.18 we may replace "holomorphic” by
"real analytic”.

Let U be an open subset of C* and f : U — C a holomorphic
function. We put U¢ = {z € C* : z € U}, where z := (Z1,...,%y)
and f(z) := f(%). Note that f is actually holomorphic (check Cauchy-
Riemann equations). Observe however that the function z — f(z) is
not holomorphic if f # const.

Proposition 1.21. Let U be an open subset of C* and f : U — C a
holomorphic function. Then f(z) € R", for all x € UNR" if and only
if f=f in a neighborhood of U NR™.

Proof. Prove that both conditions are equivalent to the fact that all
coefficients of the Taylor expansion f at a point in U NR™ are real. [J

1.6. Riemann extension theorem. Let U be an open subset of C"* =
C" ! x C and let Z be a closed subset of U such that for any 2’ € O™}
the set ({2} x C) N Z consists only of isolated points. We will say that
Z is negligible .

Exercise 1.22. Assume that U is connected and that Z is negligible
in U Show that U \ Z is also connected.
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Theorem 1.23. (Riemann extension theorem) Assume that f : U\
Z — C is a holomorphic bounded function and that Z is negligible .
Then f extends to a unique holomorphic function on U.

Proof. Let z = (2/, 29) € Z, since Z is closed there exist §,e > 0 such
that

ZN(B(z,0) x {{: [§— 20| =¢}) =10
where B(2',4) is an open disk in C"!. Let us define

- 1 flw,),
flot) =g [ s

for w € B(Z,0), t € B(29,¢). Note that, by Lemma 1.13 f is holomor-
phic with respect to each wj-variable, it is holomorphic with respect
to t-variable by the classical result, moreover it is bounded. Hence
by Osgood’s lemma (Theorem 1.11) our function f is holomorphic in

B(%',0), xB(zp,¢€). Check that f = f outside Z and prove the unique-
ness. O
2. WEIERSTRASS PREPARATION THEOREM

2.1. Symmetric polynomials and Newton sums. Let A be a com-
mutative ring with unit. We say that a polynomial P € A[X7, ..., Xj]
is symmetric if for any permutation 7 we have

P(XT(1)7 XT(k?) P(X177Xk>
Let us write

(T—Xl)"'(T—Xk,):Tk—{—olTk_l_F..._‘_O-k’

where
Z X X,
V1< <v;
Recall that o} is called j-th elementary symmetric polynomial. If &y, ..., &,

are all the roots of P = ZF 4+ a; Z* ' + .- 4 a;, then we have Viéte
formulas

aj = 0;(&1,. .., &)

Important symmetric polynomials are Newton sums

k
51 ::Z:Xi—l—---—l—X,lC

Lemma 2.1. There are polynomials R; € Z[Y1,...,Y,] such that
O'j = R]’(Sl, ey Sk)

A celebrate theorem on symmetric polynomials claims the following.
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Theorem 2.2. Let A be a commutative ring with unit and let P €
A[Xq, ..., Xy be symmetric polynomial, then there exist a unique @ €
AlYy, ..., Y] such that

P=Q(o1,...,04)

If the ring A contains Q, then there exist a unique R € A[Yy,..., Y]
such that

P = R(s1,...,Sk).
2.2. Generalized discriminants. Let us consider a generic polyno-
mial

P(2)=2 42+t
where z € C and ¢ = (cy,...,c,) € C*. Put
W, := {c € C*: P.(2) has at most s distinct complex roots }.
Let K ={1,...,k} and put
Dy(z1, ...y 2k) = Z H (2, — 2,)? , s=0,...,k—1
JCK#J=k—s p<v;up,velJ

Since Dy(z1, ... 2zx) is a symmetric polynomial, by Theorem 2.2 there
exists Dy € Cleq, ..., ¢ such that Dy = Dy oo where 0 = (04,...,0%).
We call Dy, s =0,...,k— 1 generalized discriminants of P.

Lemma 2.3.
W,={ceC": Dylc) == Dy, 1(c) =0}

Proof. Indeed, if ¢ € Wy and £ = (z1,...,2;) are all the roots (with
possible repetition) of P.(z), then #{z1,...,2,} < s, hence

Dy(§) =+ = Di—s-1(§) =0,
which implies Dy(c) = -+ = Dy_s_1(c) = 0.
Let ¢ € C* be such that Dy(c) = -+ = Dy, 1(c) = 0. Let & =
(z1,...,2x) the complete sequence of roots of P.. Assume that ¢ & Wi,

s+1<#{z,...,2} = 1. Let z1, ...z be all distinct [ roots ¢ of P.(z).
Then

Dji(z1,...,2k) = Dj(c) =0 ifj=0,1,...k—s— 1.
Since k — [ <k—s—1,
0="Dr_y(21,...,21) = H (zu—zV)Q,

p<v; pve{l,...,t}

which is absurd.

Note that D := Dy_5 is the discriminant of P, we have

D = H (2, —2,)? =% H P'(z,).

p<v

In particular D(c) # 0 if and only if all roots of P, are simple.
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Corollary 2.4. Each Wy s algebraic.

2.3. Continuity of roots. Let us consider a generic polynomial
P(2) =2+ 4,
where 2 € Cet c = (c1,...,¢) € C*. Suppose that for some 7 > 0 we
have |c;| <717, j=1,...,k, then
P(z) =0 = |z| < 2r.

Indeed we have
k k—1 k r rk
|28+ 12" 4 ] > |2 1—m---—w > 0,
if 5 <3
The following notion from general topology will be important in the
next paragraphs.

Definition 2.5. A continuous map f: X — Y, between two topolog-
ical spaces is said to be proper, if for any compact K C Y the inverse
image f~'(K) is compact.

Proposition 2.6. If X and Y are locally compact (i.e. every point has
a compact neighborhood) then f is proper if and only for each y € Y
there exists a neighborhood V' such that f~Y(V) is relatively compact
(i.e. its closure is compact).

Proof. Exercise U
Recall that we have a natural Viéte map
o=(01,...,0,) : K" = K"
So we have proved

Proposition 2.7. The map o : K" — K" is proper and surjective if
K =C.

Theorem 2.8. Let
P(2)=2" 42 4 4,

where ¢ = (cy,...,cx) € C¥. Let z,...,2, be all distinct roots of P..
Then for any € > 0 there exists § > 0 such that:
if d € Ck | —¢c| <6, and 2 € C such that P.(2') = 0, then
|2" — z;| < e for some j=1,...,s.
Proof. Let r > 0 be such that |¢;| <77, j =1,...,k, and put R := 2r.
The set 5
K = E(Oa R) \ U B(zjag)
j=1

is compact and nonempty if r is large enough. The map (w,c)
| P.(w)| is continuous and strictly positive on the compact z x K |
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hence it is also strictly positive on B(z,8) x K if § > 0 is small enough.
Decreasing, if necessary, 6 we may assume that P, has no roots outside

B(0, R), so the theorem follows. O

2.4. Weierstrass preparation theorem. Let U an open neighbor-
hood of 0 € C", we write z = (2/,2,) € C" ' xC=C". Let f: U — C
be a holomorphic function. We shall say that f is k-regular at 0, if
& f . o*f
In other words f is k-regular if z, — f(0,2,) = 2¥p(2,) with ¢ holo-
morphic and ¢(0) # 0. We denote
P(g,0) := P'(0,¢) x B(0,4),
where P'(0,¢) is a poly-disk of radius €. Let ¢; : P'(0,e) — C, j =
1,...,k be holomorphic functions, ¢;(0) = 0. We call
k
P(,zn) = 25+ ) ei(2)z
j=1

a Weierstrass polynomial.

Remark 2.9. If f = lelo P, is the expansion into series of homoge-

nous polynomials, P, # 0, then any line L such that L ¢ Pl;l(O) can
be chosen as z, -axis and f will be [y-regular.

Theorem 2.10. Let U an open neighborhood of 0 € C*.Let f : U — C
be a holomorphic function which is k-reqular at 0. Then there exists
e,0 > 0 a Weierstrass polynomial P in the poly-disk P(e,d) and holo-
morphic function ¢ nowhere vanishing in P(e,0) such that

f(Z/, ZTL) - 90(2/7 ZH)P(Z/u Zn)
for (2, z,) € P(e,d). Moreover
(1) P and ¢ are unique, P will be called the Weierstrass polynomial

associated to f,
(2) if fis real then P and ¢ are also real.

Proof. The uniqueness. Suppose that f = P = ¢ P, in some poly-
disk P(e,d). By the continuity of roots may decrease § in such way
that if 2’ € B'(0,¢), 2, € C and P(2/,2,) = 0, then |z,| < e. We may
also assume this property for the polynomial P;. So for 2’ € B'(0,¢)
two univariate monic polynomials

Z2n = P(22), 20— Pi(2,2,)

have the same roots and with same multiplicities. Hence they are equal.
It follows that ¢ = ¢ in P(e,d) \ P~*(0) which is dense in P(g,d), so
@ = ¢ in P(e,9).
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Reality. The function f is real if and only if f = f, hence
P =[f=pP
By the uniqueness we obtain P = P, ¢ = . So P and ¢ are real.
Existence. Le us fix ¢ such that z, — f(0, z,) has no zeros in the
punctured disk {0 < |z,| < €}. Recall that k is the multiplicity of
this function at 0 € C. By the continuity argument there exists § > 0
such that if 2/ € P’(0,6), then z, — f(2/, z,) has no zeros in the circle

{lzn] = ¢}

According to the theorem of Rouché z, — f(Z, z,) has k zeros in

the disk {|z,| < €}. Let us denote those zeros by wi(z), ..., wg(2').
Put

P(Z, 2,) = (zn—wi () - (zn—wi(2)) = 2" 41 () 2P+ (),
with ¢;(2) = oj(w1(2), ..., wk(2)). To show that P is a Weierstrass

polynomial it is enough to check that each c;(2") is holomorphic. By
Theorem 2.2, it is enough to show that

S; = si(wi(2), ..., wp(2)) = wi(2') + - 4+ wp(2))?

are holomorphic for j = 1,..., k. According to the theorem on loga-
rithmic residus we have

of (.1
1 5 (7, 2n)
Si(2) == — jOm T g
](Z ) 2mi /zn|:5 o f(Z/7 zn) :

By Theorem 1.11 and Lemma 1.13 functions S;(z’) are holomorphic.
To conclude note that

f(Z',2n)

P(2, z,)

is holomorphic and bounded in the complement of zeros of P. So by
Riemann’s Extension Theorem ¢ is actually holomorphic in P(g, ).
Finally note that ¢ has no zeros in P(e, d) since zeros of f and P have
the same multiplicities (with respect to z,).

@(2/7 Zn) =

g

Remark 2.11. If 2z, — f(0,z,) # 0, then f is k regular for some k.
Hence, for 2’ close enough 0 € C"~! the function z, — f(Z/, 2,) has at
most k zeros in B(0,¢). Assume now the contrary that z, — f(0,z,) =
0 but f # 0.

Can we bound the number of zeros (close to the origin) of z, +—
f(',2zn) ¢ (provided that z, — f(2',2,) Z0)

The answer is positive, the first (and forgotten for some time) solu-
tion (algebraic) was given by Bautin (1939), the second (geometric) is
due to Gabrielov (1968) and become a milestone in the real analytic
(more precisely subanalytic) geometry.
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2.5. Weierstrass division theorem.

Theorem 2.12. Let U an open neighborhood of 0 € C™. Let f; g :
U — C be two holomorphic functions. Assume that f is k-reqular at
0. Then there exists €,0 > 0 such that in the poly-disk P(e,d) we have

g=Qf +R
for (¢, z,) € P(e,d), with R holomorphic in P(e,0) of the form

R(#, zn) ga] JEAS

where d < k and a; : P'(0,e) — C are holomorphic. Moreover

(1) @ and R are unique (that is their Taylor series at 0 are unique),
(2) if f and g are real then QQ and R are also real.

Proof. Uniqueness.

Assume that Qf+R =g = Q1 f+ Ry, then0 = (Q—Q1)f+(R—Ry).
Hence it is sufficient to show that if ¢ = 0 then Q = 0 and R = 0.
Indeed, for 2 € C"! close enough to 0 the function z, — f(z';2,)
has k zeros in {|z,| < €}, this follows from Weierstrass Preparation
Theorem. Hence z, — R(Z/, z,) must have at least k roots. But degree
of R is less than k£ so R = 0, which implies Q) = 0.

Reality . The same argument as in the proof of Theorem 2.10.

Existence. By Preparation Theorem 2.10 we may assume that
f is a Weierstrass polynomial. Also we may assume that f and g
are holomorphic in a neighborhood of P(g,d), moreover that z' €
P(0,e), f(,z0) = 0= |z,| <e.

Hence the function

1 g(Z’,f) 1
Q' zy) : dg,
is holomorphic in P(g,d), by By Theorem 1.11 and Lemma 1.13. On

the other hand
1 g(#' é”)
o 2) = = / 3
270 {gj=ey & —

in P(e,d), so

1 9(=,¢) B
9= QNE ) =g | I s

where

F(Z” 57 Zn) = f(Z/7 gg : 5(2/7 Zn)

Note that z, — ['(Z/, &, 2,,) is a polynomial of degree less than k, the
coefficients are actually holomorphic in P(g,0). Thus R := Qf — g is
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a polynomial in z, of degree less than k, with coefficients holomorphic
in P'(0,9). 0

Remark 2.13. The division theorem holds also for formal power series,
also in some refined version.

2.6. Decomposition of a Weierstrass polynomial into irreducible
factors. We change a bit the notation. Let U an open subset con-
nected subset of C", we denote O(U) the ring of holomorphic functions
on U. We consider a monic polynomial

k
P(u,z) = 2" + ch(u)zfij_j
j=1

with ¢; € O(U). Our goal is to show

Theorem 2.14. There are unique monic irreducible polynomials
Q1, -+ ,Q € OU)[z] and integers vy, ..., v, such that

P=Qu---QV.

Proof. We shall use generalized discriminants Ds. For s =0,..., k—1
we put

As(u) = Ds(cl(u)7 ce 7Ck(u))
Hence A, are holomorphic in U. Since U is connected we have two

possibilities: either Ay = 0 or Int A;1(0) = (). Let r < k be such a
integer that

Ag=-Ap_pqand Ay, Z0.

Let Q := U\ A; ! (0). According to Lemma 2.3 for any a € § poly-
nomial z — P(a, z) has exactly r complex roots which we denote by
&(a),...,&(a). Note that there is no natural way to label these roots,
they should be seen as a set. However if we fix arbitrary an order as
above, then we have, by the continuity of roots and Rouché’s theorem
the following :

Lemma 2.15. One can choose continuously roots §; in a neighborhood
of any point a € ).

As consequence each root ¢; has a fixed multiplicity v;. It means
that for b close enough to a

PP 60)) = 0and 2 (5,6, # 0.

Ozvi—1 02"

Hence applying Implicit Function Theorem we obtain

Lemma 2.16. One can choose holomorphically roots &; in a neighbor-
hood of any point a € U.
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Let Z := P71(0)N (2 x C) and let 7 : Z —  denote the projection.
It follows from Lemma 2.15 that 7 is a finite covering. Let Z1,..., 7
be connected components, then (the restriction) = : Z; — 2 is again
a finite ( k;-sheeted) covering (see Exercise 3.4 for the definition). Let
us assume that & (a),. .., &, (a) are the roots z — P(a, z) which corre-
spond to the component Z;. We put, for any a € (2

cala) = ay(zin(a),... & (@), g =1,... ki

Note that each ¢, is holomorphic and locally bounded function, hence
by the Riemann Extension Theorem it extends to a holomorphic func-
tion on U. So we can now define irreducible factors.

ki
ks ki —
Qi(u,z) == 2"+ co(u)z"1
q=1
We leave the uniqueness of the decomposition as an exercise.
O

Exercise 2.17. Show that P is irreducible if an only if its discriminant
is non-identically vanishing in U.

2.7. The theorem of Puiseux.

Theorem 2.18. Let
k
Plu,z) =25+ ¢j(u)zt,
j=1

where ¢; are holomorphic functions in the disk B(0,6) C C. Assume
that P is irreducible and that the discriminant of P vanishes only at
0 € C. Then there exists a holomorphic function h : B(0,6Y%)C such
that

k-1
P(u*,2) = [ [ (= = h(0;u)).
=0
where Oy, ..., 0p_1 are the roots of unity of order k.

The idea of the proof: Consider Z = P71(0)\ {0} x C, the canonical
projection 7 : Z — B* := B(0,9)\ {0} is a k-sheeted covering. Since P
is irreducible Z is connected. Let B} := B(0,5*)\ {0}. Now consider
the map

¢:Bf duru" e B
this is also is a k-sheeted covering. Finally study the pull back of 7 by

®(u,t) = (uk,t), and show that ®~1(Z) has k connected components.
Conclude the result.
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3. MORE EXERCISES

Exercise 3.1. Maximum Principle. Let U C C" be open and con-
nected. Let f: U — C be a holomorphic function. Assume that there
exists a € U such that

|f(a)| = ilellU)\f(Z)\,

then f is constant. More generally, show that if f is non-constant, then
f is open. Is the last statement true for holomorphic maps ' : U — C"
? (Consider F(z,y) = (z,zy).)

Exercise 3.2. Let P(u,z) = 2% + ¢;(u)2*"' + -+ + cx(u), with ¢;
holomorphic in an open and connected U C C*. Put Z := P~1(0) and
let m: U x C — U stand for the canonical projection. Show that 7|z -
the restriction of 7 to Z, is open and proper. Which of these properties
remain true in the real case ?

More generally (in the complex case) we can consider 2 = U x V|
where V' C C is open. What can be said about 7|znq ?

Exercise 3.3. Let U C C™ be open and connected. Let f : U — Cbea
holomorphic non-constant function. Show that U\ f~!(0) is connected.

Exercise 3.4. Let M and N be two locally connected topological
spaces. Recall that a continuous map ¢ : M — N is covering, if
for each y € N there exists a neighborhood V' of y such that o= (V) =
Uaea Ua # 0 (a disjoint union of open sets) such that for each a € A
the map ¢|y, : Uy — V is a homeomorphism. Assume that ¢ : M — N
is a finite covering (i.e all fibers are finite). Prove the following:

(1) if N is connected then all fibers have the same cardinality k, we
will say that the covering is k-sheeted;

(2) if N is connected and M C M is an open and closed subset
of M (e.g. M may be a connected component of M) , then

¢lzr : M — N is again a covering.

(3) let v : [0,1] — N be a continuous arc, let g € M be such a
point that ¢(z9) = 7(0), then there exists a unique 7 : [0, 1] —
M such that (0) = zg and p oy = 7.

Exercise 3.5. Let M and N be two locally compact topological spaces,
show that ¢ : M — N is a finite covering if and only if ¢ is proper
local homeomorphism.

Exercise 3.6. Chow’s Theorem for hypersurfaces. Let U C C"
be open and convex neighborhood of 0 € C. Let f : U — C be a
holomorphic function, denote Z := f~*(0). Assume that Z is homoge-
nous that means: z € Z, |t| < 1 = tz € Z, equivalently that for
any complex vector line L C C" we have either LN Z = LNU or
LN Z = {0}. Show that Z is actually algebraic, precisely that there
exists a homogenous polynomial g =: C* — C such that Z =U ng~'.



