
INTRODUCTION TO REAL ANALYTIC GEOMETRY

KRZYSZTOF KURDYKA

1. Analytic functions in several variables

1.1. Summable families. Let (E, ‖ ‖) be a normed space over the
field R or C, dim E < ∞. Let {xα}α∈A be a family (possibly infinite
and even uncountable) of vectors in E. We say that this family is
summable if there is x ∈ E such that

∀ε>0 ∃Fε finite∀Fε⊂F finite ‖x−
∑
α∈F

xα‖ < ε.

We write in this case x :=
∑

α∈A xα, clearly x is unique.
We shall say that a collection fα : Z → E, α ∈ A is uniformly sum-

mable if the family {fα(z)}α∈A is summable for each z ∈ Z, moreover
Fε can be chosen independently of z.

Exercise 1.1. —The following conditions are equivalent:

(1)
∑

α∈A xα is summable
(2)

∑
α∈A ‖xα‖ is summable

(3) supA⊃F−finite{
∑

α∈F ‖xα‖} < +∞

Exercise 1.2. —Assume that A =
⋃

β∈B Cβ is a disjoint union. Then∑
α∈A xα is summable if and only if cβ :=

∑
α∈Cβ

xα is summable for

each β ∈ B and
∑

β∈B cβ is summable.

1.2. Power series. Let K = R or C, for z = (z1, . . . , zn) ∈ Kn we
denote ‖z‖ = (|z1|2 · · ·+ |z|2)1/2.

Let ν = (ν1, . . . , νn) ∈ Nn, we recall standard notations : ν! :=
ν1! · · · νn!,

(
ν
µ

)
= ν!

µ!(ν−µ)!
for µ ≤ ν in the partial order (µ ≤ ν ⇒ µi ≤

νi, i = 1, . . . , n).
zν := zν1

1 . . . zνn
n . For a ∈ K and r = (r1, . . . , rn), ri > 0 we denote

by
P (a, r) := {z ∈ Kn : |zi − ai| < ri, i = 1, . . . , n} the poly-cylinder

centered at a of poly-radius r.

Exercise 1.3. Let θ = (θ1, . . . , θn), |θi| < 1, show that∑
ν∈Nn

θν =
1

(1− θ1) · · · (1− θn)
.

A family aν ∈ C, ν ∈ Nn of complex numbers determines a formal
power series

∑
ν∈Nn aνz

ν .

1
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Lemma 1.4. (Abel’s Lemma) Let aν ∈ C, ν ∈ Nn, be a family of
complex numbers (in other words a power series

∑
ν∈Nn aνz

ν is given).
Assume that there exists b = (b1, . . . , bn) ∈ C∗ and M > 0 such
that |aνb

ν | ≤ M , for all ν ∈ Nn. Then
∑

ν∈Nn aνz
ν is summable

(we will say that the series converges) for any z ∈ P (0, |b|), where
|b| = (|b1|, . . . , |bn|) ∈ C∗.

Proof. Use Exercise 1.3. Note that actually the series converges abso-
lutely.

�

Suppose that we are given a power series
∑

ν∈Nn aνz
ν . Put

Pl(z) :=
∑

{ν:|ν|=l}

aνz
ν ,

this is a homogenous polynomial of degree l. Then (for a fixed z ∈ Cn)
the following conditions are equivalent:

(1)
∑

ν∈Nn aνz
ν is summable,

(2) the series

∞∑
l=0

 ∑
{ν:|ν|=l}

|aνz
ν |


converges.

Note that the condition (2) above implies the series
∑∞

l=0 Pl(z) con-
verges absolutely. By the Cauchy rule we obtain that

γ(z) := lim sup
l→∞

 ∑
{ν:|ν|=l}

|aνz|

 1
l

≤ 1,

which implies that
∑

{ν:|ν|=l} Pl(z) converges absolutely. On the other

hand if γ(z) < 1, then again by Cauchy’s rule and the above equivalence
we obtain that

∑
ν∈Nn aνz

ν is summable. Thus we have obtained the
following

Corollary 1.5. If a series
∑

ν∈Nn aνz
ν is summable for any z ∈ P (0, r),

then γ(z) < 1 for any z ∈ P (0, r).

This corollary enables as to associate to any power series the ”sup”
of poly-radiuses r on which we have γ < 1. We shall call such a r ∈ Rn

+

the radius of convergence.
Suppose that we are given a (formal) power series f =

∑
ν∈Nn aνz

ν ,
let k = 1, . . . , n. Put

∂f

∂zk

:=
∑
ν∈Nn

νkaνz
ν1
1 · · · zνk−1

k · · · zνn
n .
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Exercise 1.6. If a series f is summable in P (0, r), then ∂f
∂zk

is also

summable in P (0, r). Hint : use the fact liml→∞ l
1

l−1 = 1.

Definition 1.7. Let U be an open subset of Kn, and let f : U → K
be a function. We say that f is analytic at c ∈ U if there exist a power
series

∑
ν∈Nn aν(z− c)ν (called Taylor expansion of f at c) and r ∈ Rn

+

such that the series is summable in P (c, r) and

f(z) =
∑
ν∈Nn

aν(z − c)ν , z ∈ P (c, r).

We say that f is analytic in U if f is analytic at any point of U . In
the case K = C analytic functions are rather called holomorphic .

Proposition 1.8. Any analytic function f is infinitely many times
K-differentiable, moreover ∂f

∂zk
is again analytic.

Proof. The result is classical for n = 1, so it is enough to use Exercise
1.6. We obtain also

ν!aν =
∂νf

∂zν
(c).

�

Theorem 1.9. (Principle of analytic continuation) Let U be an open
connected subset of Kn and f : U → K an analytic function. Assume
that at some c ∈ U we have ∂νf

∂zν (c) = 0, for all ν ∈ Nn. Then f ≡ 0 in
U . In particular if f ≡ 0 in an open nonempty V ⊂ U , then f ≡ 0 in
U .

Proof. One can join any two points in U by a an arc piecewise parallel
to coordinate axes. So we can apply the classical result in the case
n = 1. �

Remark 1.10. It follows that, if U connected and f : U → K is an
analytic function such f 6≡ const, then Intf−1(0) = ∅.

1.3. Separate analyticty.

Theorem 1.11. (Osgood’s lemma) Let U be an open subset of Cn and
f : U → C a locally bounded function which is holomorphic with respect
to each variable separately. Then f is holomorphic in U .

Remark 1.12. In fact according to a theorem of Hartogs the assump-
tion that f is locally bounded is superfluous. But the proof of the
Hartogs theorem requires a more advanced tools.

Proof. We may assume that U = P (c, r) is a poly-cylinder. We shall
proceed by the induction on n, the case n = 1 is trivial. We need a
following
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Lemma 1.13. Let Ω be an open subset of C and let g : Ω× [a, b] → C
be a function. Assume that g(z, t) is bounded, holomorphic with respect
to z and contiuous with respect to t. Then the function

h(z) :=

∫ b

a

g(z, t)dt

is holomorphic in Ω.

Proof of the lemma. Let us fix c ∈ Ω and B := B(c, ρ) ⊂ Ω a disk
such that its boundary ∂B ⊂ Ω. Then by the Cauchy formula we may
write

g(z, t) =
1

2πi

∫
∂B

g(ξ, t)

ξ − z
dξ, z ∈ B.

Hence g is locally uniformly continuous with respect to z, since g is
bounded. Thus g is continuous (i.e. with respect to (z, t)-variables).
So, by Fubini’s theorem, for z ∈ B we can write

h(z) =

∫ b

a

(
1

2πi

∫
∂B

g(ξ, t)

ξ − z
dξ

)
dt =

1

2πi

∫
∂B

1

ξ − z

(∫ b

a

g(ξ, t)dt

)
dξ

That is h(z) = 1
2πi

∫
∂B

h(ξ)
ξ−z

dξ, z ∈ B, which proves that h is holomor-

phic. So Lemma 1.13 follows.
To finish the proof of Theorem 1.11 we expand our function f on

P (c, r) ⊂ Cn in the series

f(z) =
∞∑
l=0

Al(z
′)(zn − cn)l

which converges absolutely, where z′ = (z1, . . . , zn−1). Again thanks to
Cauchy’s formula we have

Al(z
′) =

1

2πi

∫
|ξ−cn|=ρ

f(z′, ξ)

(ξ − cn)l+1
dξ,

for any 0 < ρ < rn. Now, by Lemma 1.13, each function Al(z
′) is holo-

morphic with respect to each variable separately and locally bounded.
Hence by the induction hypothesis each function Al(z

′) is actually holo-
morphic. Expanding Al(z

′) into a power series we find an expansion of
f into a power series in the poly-cylinder P (c, r). Exercise: check the
convergence.

�

Remark 1.14. Clearly Osgood’s lemma is false in the real case. For
instance consider f(x, y) = x3

x2+y2 , f(0, 0) = 0. Check that this function

is continuous, analytic with respect to x and y, but not differentiable
at the origin.
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1.4. Cauchy-Riemann equations and consequences. Recall the
classical basic functios about holomorphic functions of 1 variable. Let
f : U → C be function, where U is an open subset of C, then the
following conditions are equivalent :

(1) f is holomorphic in U ;
(2) f is C-differentiable at any point of U ;
(3) f is R-differentiable at any point of a ∈ U and the (real) differ-

ential daf : C → C is actually C-linear;
(4) f is R-differentiable and the Cauchy -Riemann equations are

satisfied:
∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

where u = Re f and v = Im f .

Let us recall that if Y and Z are vector spaces over C then they
carry a unique structure of vector spaces over R. Consider an R-linear
map ϕ : Z → Y , then ϕ is C- linear if and only if

ϕ(iz) = iϕ(z), z ∈ Z.

Now we can state the main theorem about holomorphic functions in
several variables.

Theorem 1.15. Let f : U → C be function, where U is an open subset
of Cn. Then f is holomorphic in U if and only if f is continuous (even
merely locally bounded) and ∂f

∂zk
, k = 1, . . . , n (complexes derivatives)

exists at any point in U .

Proof. Apply Osgood’s lemma and use the above results in 1 variable.
�

Definition 1.16. Let U be a an open subset of Cn, we say that a map
F = (f1, . . . , fk) : U → Ck holomorphic if each fj is holomorphic.

Proposition 1.17. A map F = (f1, . . . , fk) : U → Ck is holomorphic
if and only if F is C1 in the real sense and the differential daf is C-
linear at every a ∈ C.

Proof. This is an immediate consequence of Theorem 1.15. �

Thus we obtain the following basic properties of holomorphic maps.

Corollary 1.18.

(1) If f and g are holomorphic then also , (f + g),(fg), (f
g
) (where

defined) are holomorphic.
(2) If G and F are holomorphic maps, then G ◦ F is holomorphic.
(3) If F is holomorphic such that F−1 exists and daF is an isomor-

phism for each a ∈ U (the last assumption is actually superflu-
ous), then F−1 is holomorphic.

(4) Implicit function theorem holds in the holomorphic setting.
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Note that the explicit and direct estimates in the above statements
for poly-radius of convergence are not obvious at all.

1.5. Real analytic functions. Let W be an open subset in Rn and
f : W → R an analytic function. This means that for any a ∈ W
the function f can be expanded in a power series in PR(a, r) for some
r = r(a) ∈ Rn

+, where

PR(a, r) := {z ∈ Rn : |zi − ai| < ri, i = 1, . . . , n} = Rn ∩ PC(a, r).

Here PC(a, r) := {z ∈ Cn : |zi − ai| < ri, i = 1, . . . , n}.

Proposition 1.19. There exist an open set W̃ ⊂ Cn, W ⊂ W̃ and

holomorphic function f̃ : W̃ → C such that f̃ |W = f . Moreover (W̃ , f̃)

are unique in the following sense. If W̃1 ⊂ Cn is an open set and

f̃1 : W̃1 → C a holomorphic function such that f̃1|W = f , then there

exists an open set U ⊂ Cn, W ⊂ U and such that f̃1|U = f̃ |U .

We shall call the holomorphic function f̃ : W̃ → C complexification
of f .

Proof. Put W̃ =
⋃

a∈W PC(a, r(a)). the function f̃ :=
⋃

a∈W f̃a. Here f̃a

is the holomorphic functionin PC(a, r(a)) defined by the power series

obtained at a. We leave as exercise details to be checked: that f̃ is
well defined and the second part of the statement. Hint: use analytic
continuation theorem. �

Corollary 1.20. In Corollary 1.18 we may replace ”holomorphic” by
”real analytic”.

Let U be an open subset of Cn and f : U → C a holomorphic
function. We put U c = {z ∈ Cn : z ∈ U}, where z := (z1, . . . , zn)

and f(z) := f(z). Note that f is actually holomorphic (check Cauchy-

Riemann equations). Observe however that the function z 7→ f(z) is
not holomorphic if f 6= const.

Proposition 1.21. Let U be an open subset of Cn and f : U → C a
holomorphic function. Then f(x) ∈ Rn, for all x ∈ U ∩Rn if and only
if f = f in a neighborhood of U ∩ Rn.

Proof. Prove that both conditions are equivalent to the fact that all
coefficients of the Taylor expansion f at a point in U ∩Rn are real. �

1.6. Riemann extension theorem. Let U be an open subset of Cn =
Cn−1×C and let Z be a closed subset of U such that for any z′ ∈ Cn−1

the set ({z′}×C)∩Z consists only of isolated points. We will say that
Z is negligible .

Exercise 1.22. Assume that U is connected and that Z is negligible
in U Show that U \ Z is also connected.
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Theorem 1.23. (Riemann extension theorem) Assume that f : U \
Z → C is a holomorphic bounded function and that Z is negligible .
Then f extends to a unique holomorphic function on U .

Proof. Let z = (z′, z0) ∈ Z, since Z is closed there exist δ, ε > 0 such
that

Z ∩ (B(z′, δ)× {ξ : |ξ − z0| = ε}) = ∅,
where B(z′, δ) is an open disk in Cn−1. Let us define

f̃(w, t) :=
1

2πi

∫
|ξ−z0|=ε

f(w, ξ)

ξ − t
dξ,

for w ∈ B(z′, δ), t ∈ B(z0, ε). Note that, by Lemma 1.13 f̃ is holomor-
phic with respect to each wj-variable, it is holomorphic with respect
to t-variable by the classical result, moreover it is bounded. Hence

by Osgood’s lemma (Theorem 1.11) our function f̃ is holomorphic in

B(z′, δ),×B(z0, ε). Check that f̃ = f outside Z and prove the unique-
ness. �

2. Weierstrass Preparation Theorem

2.1. Symmetric polynomials and Newton sums. Let A be a com-
mutative ring with unit. We say that a polynomial P ∈ A[X1, . . . , Xk]
is symmetric if for any permutation τ we have

P (Xτ(1), . . . , Xτ(k)) = P (X1, . . . , Xk).

Let us write

(T −X1) · · · (T −Xk) = T k + σ1T
k−1 + · · ·+ σk,

where

σj := (−1)j
∑

ν1<···<νj

Xν1 · · ·Xνj

Recall that σj is called j-th elementary symmetric polynomial. If ξ1, . . . , ξk

are all the roots of P = Zk + a1Z
k−1 + · · · + ak, then we have Viéte

formulas

aj = σj(ξ1, . . . , ξn)

Important symmetric polynomials are Newton sums

sl :=
k∑

i=1

X l
1 + · · ·+ X l

k

Lemma 2.1. There are polynomials Rj ∈ Z[Y1, . . . , Yn] such that

σj = Rj(s1, . . . , sk)

A celebrate theorem on symmetric polynomials claims the following.
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Theorem 2.2. Let A be a commutative ring with unit and let P ∈
A[X1, . . . , Xk] be symmetric polynomial, then there exist a unique Q ∈
A[Y1, . . . , Yk] such that

P = Q(σ1, . . . , σn)

If the ring A contains Q, then there exist a unique R ∈ A[Y1, . . . , Yk]
such that

P = R(s1, . . . , sk).

2.2. Generalized discriminants. Let us consider a generic polyno-
mial

Pc(z) = zk + c1z
k−1 + · · ·+ ck

where z ∈ C and c = (c1, . . . , ck) ∈ Ck. Put

Ws := {c ∈ Ck : Pc(z) has at most s distinct complex roots }.
Let K = {1, . . . , k} and put

Ds(z1, . . . , zk) =
∑

J⊂K#J=k−s

∏
µ<ν; µ,ν∈J

(zµ− zν)
2 , s = 0, . . . , k− 1

Since Ds(z1, . . . zk) is a symmetric polynomial, by Theorem 2.2 there
exists Ds ∈ C[c1, . . . , ck] such that Ds = Ds ◦σ where σ = (σ1, . . . , σk).
We call Ds, s = 0, . . . , k − 1 generalized discriminants of P .

Lemma 2.3.

Ws = {c ∈ Ck : D0(c) = · · · = Dk−s−1(c) = 0}
Proof. Indeed, if c ∈ Ws and ξ = (z1, . . . , zk) are all the roots (with
possible repetition) of Pc(z), then #{z1, . . . , zk} ≤ s, hence

D0(ξ) = · · · = Dk−s−1(ξ) = 0,

which implies D0(c) = · · · = Dk−s−1(c) = 0.
Let c ∈ Ck be such that D0(c) = · · · = Dk−s−1(c) = 0. Let ξ =

(z1, . . . , zk) the complete sequence of roots of Pc. Assume that c 6∈ Ws,
s+1 ≤ #{z1, . . . , zk} = l. Let z1, . . . zt be all distinct l roots t of Pc(z).
Then

Dj(z1, . . . , zk) = Dj(c) = 0 ifj = 0, 1, . . . k − s− 1.

Since k − l ≤ k − s− 1,

0 = Dk−t(z1, . . . , zk) =
∏

µ<ν; µ,ν∈{1,...,t}

(zµ − zν)
2 ,

which is absurd.
�

Note that D := Dk−2 is the discriminant of P , we have

D =
∏
µ<ν

(zµ − zν)
2 = ±

∏
ν=1

P ′(zν).

In particular D(c) 6= 0 if and only if all roots of Pc are simple.
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Corollary 2.4. Each Ws is algebraic.

2.3. Continuity of roots. Let us consider a generic polynomial

Pc(z) = zk + c1z
k−1 + · · ·+ ck,

where z ∈ C et c = (c1, . . . , ck) ∈ Ck. Suppose that for some r > 0 we
have |cj| ≤ rj, j = 1, . . . , k, then

P (z) = 0 ⇒ |z| ≤ 2r.

Indeed we have

|zk + c1z
k−1 + · · ·+ ck| ≥ |zk|

(
1− r

|z|
· · · − rk

|zk|

)
> 0,

if r
|z| ≤

1
2
.

The following notion from general topology will be important in the
next paragraphs.

Definition 2.5. A continuous map f : X → Y , between two topolog-
ical spaces is said to be proper, if for any compact K ⊂ Y the inverse
image f−1(K) is compact.

Proposition 2.6. If X and Y are locally compact (i.e. every point has
a compact neighborhood) then f is proper if and only for each y ∈ Y
there exists a neighborhood V such that f−1(V ) is relatively compact
(i.e. its closure is compact).

Proof. Exercise �

Recall that we have a natural Viéte map

σ = (σ1, . . . , σn) : Kn → Kn.

So we have proved

Proposition 2.7. The map σ : Kn → Kn is proper and surjective if
K = C.

Theorem 2.8. Let

Pc(z) = zk + c1z
k−1 + · · ·+ ck,

where c = (c1, . . . , ck) ∈ Ck. Let z1, . . . , zs be all distinct roots of Pc.
Then for any ε > 0 there exists δ > 0 such that:

if c′ ∈ Ck, |c′ − c| < δ, and z′ ∈ C such that Pc′(z
′) = 0, then

|z′ − zj| < ε for some j = 1, . . . , s.

Proof. Let r > 0 be such that |cj| ≤ rj, j = 1, . . . , k, and put R := 2r.
The set

K := B(0, R) \
s⋃

j=1

B(zj, ε)

is compact and nonempty if r is large enough. The map (w, c) 7→
|Pc(w)| is continuous and strictly positive on the compact z × K ,
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hence it is also strictly positive on B(z, δ)×K if δ > 0 is small enough.
Decreasing, if necessary, δ we may assume that Pc′ has no roots outside
B(0, R), so the theorem follows. �

2.4. Weierstrass preparation theorem. Let U an open neighbor-
hood of 0 ∈ Cn, we write z = (z′, zn) ∈ Cn−1×C = Cn. Let f : U → C
be a holomorphic function. We shall say that f is k-regular at 0, if

∂jf

∂zj
n

(0) = 0, j = 1, . . . , k − 1 and
∂kf

∂zk
n

(0) 6= 0.

In other words f is k-regular if zn 7→ f(0, zn) = zk
nϕ(zn) with ϕ holo-

morphic and ϕ(0) 6= 0. We denote

P (ε, δ) := P ′(0, ε)×B(0, δ),

where P ′(0, ε) is a poly-disk of radius ε. Let cj : P ′(0, ε) → C, j =
1, . . . , k be holomorphic functions, cj(0) = 0. We call

P (z′, zn) = zk
n +

k∑
j=1

cj(z
′)zk−j

n

a Weierstrass polynomial.

Remark 2.9. If f =
∑

l≥l0
Pl is the expansion into series of homoge-

nous polynomials, Pl0 6= 0, then any line L such that L 6⊂ P−1
l0

(0) can
be chosen as zn -axis and f will be l0-regular.

Theorem 2.10. Let U an open neighborhood of 0 ∈ Cn.Let f : U → C
be a holomorphic function which is k-regular at 0. Then there exists
ε, δ > 0 a Weierstrass polynomial P in the poly-disk P (ε, δ) and holo-
morphic function ϕ nowhere vanishing in P (ε, δ) such that

f(z′, zn) = ϕ(z′, zn)P (z′, zn)

for (z′, zn) ∈ P (ε, δ). Moreover

(1) P and ϕ are unique, P will be called the Weierstrass polynomial
associated to f ,

(2) if f is real then P and ϕ are also real.

Proof. The uniqueness. Suppose that f = ϕP = ϕ1P1 in some poly-
disk P (ε, δ). By the continuity of roots may decrease δ in such way
that if z′ ∈ B′(0, ε), zn ∈ C and P (z′, zn) = 0, then |zn| < ε. We may
also assume this property for the polynomial P1. So for z′ ∈ B′(0, ε)
two univariate monic polynomials

zn 7→ P (z′, zn), zn 7→ P1(z
′, zn)

have the same roots and with same multiplicities. Hence they are equal.
It follows that ϕ = ϕ1 in P (ε, δ) \ P−1(0) which is dense in P (ε, δ), so
ϕ = ϕ1 in P (ε, δ).
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Reality. The function f is real if and only if f = f , hence

ϕP = f = ϕP

By the uniqueness we obtain P = P , ϕ = ϕ. So P and ϕ are real.
Existence. Le us fix ε such that zn 7→ f(0, zn) has no zeros in the

punctured disk {0 < |zn| ≤ ε}. Recall that k is the multiplicity of
this function at 0 ∈ C. By the continuity argument there exists δ > 0
such that if z′ ∈ P ′(0, δ), then zn 7→ f(z′, zn) has no zeros in the circle
{|zn| = ε}.

According to the theorem of Rouché zn 7→ f(z′, zn) has k zeros in
the disk {|zn| < ε}. Let us denote those zeros by w1(z

′), . . . , wk(z
′).

Put

P (z′, zn) := (zn−w1(z
′) · · · (zn−wk(z

′)) = zk
n +c1(z

′)zk−1
n + · · ·+ck(z

′),

with cj(z
′) = σj(w1(z

′), . . . , wk(z
′)). To show that P is a Weierstrass

polynomial it is enough to check that each cj(z
′) is holomorphic. By

Theorem 2.2, it is enough to show that

Sj = sj(w1(z
′), . . . , wk(z

′)) = w1(z
′)j + · · ·+ wk(z

′))j

are holomorphic for j = 1, . . . , k. According to the theorem on loga-
rithmic residus we have

Sj(z
′) :=

1

2πi

∫
|zn|=ε

zj
n

∂f
∂zn

(z′, zn)

f(z′, zn)
dzn,

By Theorem 1.11 and Lemma 1.13 functions Sj(z
′) are holomorphic.

To conclude note that

ϕ(z′, zn) =
f(z′, zn)

P (z′, zn)

is holomorphic and bounded in the complement of zeros of P . So by
Riemann’s Extension Theorem ϕ is actually holomorphic in P (ε, δ).
Finally note that ϕ has no zeros in P (ε, δ) since zeros of f and P have
the same multiplicities (with respect to zn).

�

Remark 2.11. If zn 7→ f(0, zn) 6≡ 0, then f is k regular for some k.
Hence, for z′ close enough 0 ∈ Cn−1 the function zn 7→ f(z′, zn) has at
most k zeros in B(0, ε). Assume now the contrary that zn 7→ f(0, zn) ≡
0 but f 6≡ 0.

Can we bound the number of zeros (close to the origin) of zn 7→
f(z′, zn) ? (provided that zn 7→ f(z′, zn) 6≡ 0)

The answer is positive, the first (and forgotten for some time) solu-
tion (algebraic) was given by Bautin (1939), the second (geometric) is
due to Gabrielov (1968) and become a milestone in the real analytic
(more precisely subanalytic) geometry.
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2.5. Weierstrass division theorem.

Theorem 2.12. Let U an open neighborhood of 0 ∈ Cn. Let f ; g :
U → C be two holomorphic functions. Assume that f is k-regular at
0. Then there exists ε, δ > 0 such that in the poly-disk P (ε, δ) we have

g = Qf + R

for (z′, zn) ∈ P (ε, δ), with R holomorphic in P (ε, δ) of the form

R(z′, zn) =
d∑

j=1

aj(z
′)zk−j

n ,

where d < k and aj : P ′(0, ε) → C are holomorphic. Moreover

(1) Q and R are unique (that is their Taylor series at 0 are unique),
(2) if f and g are real then Q and R are also real.

Proof. Uniqueness.
Assume that Qf +R = g = Q1f +R1, then 0 = (Q−Q1)f +(R−R1).

Hence it is sufficient to show that if g ≡ 0 then Q ≡ 0 and R ≡ 0.
Indeed, for z′ ∈ Cn−1 close enough to 0 the function zn 7→ f(z′; zn)
has k zeros in {|zn| < ε}, this follows from Weierstrass Preparation
Theorem. Hence zn 7→ R(z′, zn) must have at least k roots. But degree
of R is less than k so R ≡ 0, which implies Q ≡ 0.

Reality . The same argument as in the proof of Theorem 2.10.
Existence. By Preparation Theorem 2.10 we may assume that

f is a Weierstrass polynomial. Also we may assume that f and g
are holomorphic in a neighborhood of P (ε, δ), moreover that z′ ∈
P ′(0, ε), f(′, zn) = 0 ⇒ |zn| < ε.

Hence the function

Q(z′, zn) :=
1

2πi

∫
{|ξ|=ε}

g(z′, ξ)

f(z′, zn)

1

ξ − zn

dξ,

is holomorphic in P (ε, δ), by By Theorem 1.11 and Lemma 1.13. On
the other hand

g(z′, zn) =
1

2πi

∫
{|ξ|=ε}

g(z′, ξ)

ξ − zn

dξ,

in P (ε, δ), so

(g −Qf)(z′, zn) =
1

2πi

∫
{|ξ|=ε}

g(z′, ξ)

f(z′, zn)
Γ(z′, ξ, zn)dξ,

where

Γ(z′, ξ, zn) :=
f(z′, ξ)− f(z′, zn)

ξ − zn

.

Note that zn 7→ Γ(z′, ξ, zn) is a polynomial of degree less than k, the
coefficients are actually holomorphic in P (ε, δ). Thus R := Qf − g is
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a polynomial in zn of degree less than k, with coefficients holomorphic
in P ′(0, δ). �

Remark 2.13. The division theorem holds also for formal power series,
also in some refined version.

2.6. Decomposition of a Weierstrass polynomial into irreducible
factors. We change a bit the notation. Let U an open subset con-
nected subset of Cn, we denote O(U) the ring of holomorphic functions
on U . We consider a monic polynomial

P (u, z) = zk +
k∑

j=1

cj(u)zk−j
n

with cj ∈ O(U). Our goal is to show

Theorem 2.14. There are unique monic irreducible polynomials
Q1, · · · , Ql ∈ O(U)[z] and integers ν1, . . . , νl such that

P = Qν1
1 · · ·Qνl

l .

Proof. We shall use generalized discriminants Ds. For s = 0, . . . , k − 1
we put

∆s(u) = Ds(c1(u), . . . , ck(u))

Hence ∆s are holomorphic in U . Since U is connected we have two
possibilities: either ∆s ≡ 0 or Int ∆−1

s (0) = ∅. Let r ≤ k be such a
integer that

∆0 ≡ · · ·∆k−r−1 and ∆k−r 6≡ 0.

Let Ω := U \ ∆−1
k−r(0). According to Lemma 2.3 for any a ∈ Ω poly-

nomial z 7→ P (a, z) has exactly r complex roots which we denote by
ξ1(a), . . . , ξr(a). Note that there is no natural way to label these roots,
they should be seen as a set. However if we fix arbitrary an order as
above, then we have, by the continuity of roots and Rouché’s theorem
the following :

Lemma 2.15. One can choose continuously roots ξj in a neighborhood
of any point a ∈ Ω.

As consequence each root ξj has a fixed multiplicity νj. It means
that for b close enough to a

∂νj−1P

∂zνj−1
(b, ξj(b)) = 0 and

∂rjP

∂zrj
(b, ξj(b)) 6= 0.

Hence applying Implicit Function Theorem we obtain

Lemma 2.16. One can choose holomorphically roots ξj in a neighbor-

hood of any point a ∈ Ũ .
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Let Z := P−1(0)∩ (Ω×C) and let π : Z → Ω denote the projection.
It follows from Lemma 2.15 that π is a finite covering. Let Z1, . . . , Zl

be connected components, then (the restriction) π : Zi → Ω is again
a finite ( ki-sheeted) covering (see Exercise 3.4 for the definition). Let
us assume that ξ1(a), . . . , ξki

(a) are the roots z 7→ P (a, z) which corre-
spond to the component Zi. We put, for any a ∈ Ω

cq(a) = σq(xi1(a), . . . , ξki
(a)), q = 1, . . . , ki.

Note that each cq is holomorphic and locally bounded function, hence
by the Riemann Extension Theorem it extends to a holomorphic func-
tion on U . So we can now define irreducible factors.

Qi(u, z) := zki +

ki∑
q=1

cq(u)zki−q

We leave the uniqueness of the decomposition as an exercise.
�

Exercise 2.17. Show that P is irreducible if an only if its discriminant
is non-identically vanishing in U .

2.7. The theorem of Puiseux.

Theorem 2.18. Let

P (u, z) = zk +
k∑

j=1

cj(u)zk−j
n ,

where cj are holomorphic functions in the disk B(0, δ) ⊂ C. Assume
that P is irreducible and that the discriminant of P vanishes only at
0 ∈ C. Then there exists a holomorphic function h : B(0, δ1/k)C such
that

P (uk, z) =
k−1∏
j=0

(z − h(θju)),

where θ0, . . . , θk−1 are the roots of unity of order k.

The idea of the proof: Consider Z = P−1(0)\{0}×C, the canonical
projection π : Z → B∗ := B(0, δ)\{0} is a k-sheeted covering. Since P
is irreducible Z is connected. Let B∗

k := B(0, δ1/k) \ {0}. Now consider
the map

ϕ : B∗
k 3 u 7→ uk ∈ B∗

this is also is a k-sheeted covering. Finally study the pull back of π by
Φ(u, t) = (uk, t), and show that Φ−1(Z) has k connected components.
Conclude the result.
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3. More exercises

Exercise 3.1. Maximum Principle. Let U ⊂ Cn be open and con-
nected. Let f : U → C be a holomorphic function. Assume that there
exists a ∈ U such that

|f(a)| = sup
z∈U

|f(z)|,

then f is constant. More generally, show that if f is non-constant, then
f is open. Is the last statement true for holomorphic maps F : U → Cn

? (Consider F (x, y) = (x, xy).)

Exercise 3.2. Let P (u, z) = zk + c1(u)zk−1 + · · · + ck(u), with cj

holomorphic in an open and connected U ⊂ Cn. Put Z := P−1(0) and
let π : U ×C → U stand for the canonical projection. Show that π|Z -
the restriction of π to Z, is open and proper. Which of these properties
remain true in the real case ?

More generally (in the complex case) we can consider Ω = U × V ,
where V ⊂ C is open. What can be said about π|Z∩Ω ?

Exercise 3.3. Let U ⊂ Cn be open and connected. Let f : U → C be a
holomorphic non-constant function. Show that U \f−1(0) is connected.

Exercise 3.4. Let M and N be two locally connected topological
spaces. Recall that a continuous map ϕ : M → N is covering, if
for each y ∈ N there exists a neighborhood V of y such that ϕ−1(V ) =⋃

α∈A Uα 6= ∅ (a disjoint union of open sets) such that for each α ∈ A
the map ϕ|Uα : Uα → V is a homeomorphism. Assume that ϕ : M → N
is a finite covering (i.e all fibers are finite). Prove the following:

(1) if N is connected then all fibers have the same cardinality k, we
will say that the covering is k-sheeted;

(2) if N is connected and M̃ ⊂ M is an open and closed subset

of M (e.g. M̃ may be a connected component of M) , then

ϕ|fM : M̃ → N is again a covering.
(3) let γ : [0, 1] → N be a continuous arc, let x0 ∈ M be such a

point that ϕ(x0) = γ(0), then there exists a unique γ̃ : [0, 1] →
M such that γ̃(0) = x0 and ϕ ◦ γ̃ = γ.

Exercise 3.5. Let M and N be two locally compact topological spaces,
show that ϕ : M → N is a finite covering if and only if ϕ is proper
local homeomorphism.

Exercise 3.6. Chow’s Theorem for hypersurfaces. Let U ⊂ Cn

be open and convex neighborhood of 0 ∈ C. Let f : U → C be a
holomorphic function, denote Z := f−1(0). Assume that Z is homoge-
nous that means: z ∈ Z, |t| ≤ 1 ⇒ tz ∈ Z, equivalently that for
any complex vector line L ⊂ Cn we have either L ∩ Z = L ∩ U or
L ∩ Z = {0}. Show that Z is actually algebraic, precisely that there
exists a homogenous polynomial g =: Cn → C such that Z = U ∩ g−1.


