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The assets

Consider a portfolio with a locally riskless asset B ≡ 1, and risky
assets S i , i = 1, . . . , n, which evolves as an exponential additive
processes

dS i
t = S i

t− dR i
t (1)

where R i , i = 1, . . . , n, are the components of the additive process
R = (R1, . . . ,Rn) with dynamics

dRt = µ(t)dt + σ(t)dwt +

∫
Rn

x(N(dx , dt)− νt(dx)dt)

with µ = (µ1, . . . , µn) : [0,T ]→ Rn, σ = (σij)ij : [0,T ]→ Rn×d

measurable functions, w = (w 1, . . . ,wd) a d-dimensional
Brownian motion and N(dx , dt) a Poisson random measure N on
Rn with compensating measure νt(dx)dt.
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Compact notation

We can write the dynamics of St = (S1
t , . . . ,S

n
t ) in a more

compact vectorial notation as

dSt = diag(St−) dRt

where diag(v) denotes the diagonal matrix in Rn×n having in the
principal diagonal the elements of the n-dimensional vector v .



The model The HJB equation CRRA utility Analysis Examples

Positivity of prices

In order to guarantee that the price of the n assets stays a.s.
positive for all t ∈ [0,T ], we assume that

supp(νt) ⊆ X := {x ∈ Rn|xi ≥ −1 ∀i = 1, . . . , n}

and that νt(∂X ) = 0 for all t ∈ [0,T ].
Remark: When dealing with exponential additive processes, it is
usual to write them as eLt , with L a suitable additive process.
Equation (1) has solution

S i
t = eR i

t− 1
2

R t
0

Pn
j=1 σ

2
ij (s) ds

∏
0<s≤t

(1 + ∆R i
s)e−∆R i

s

with ∆R i
s := R i

s − R i
s−. Under the assumptions above,

1 + ∆R i
t > 0 P-a.s., so the S i , i = 1, . . . , n, are strictly positive

processes and can be written as eLi
t , with Li additive processes.



The model The HJB equation CRRA utility Analysis Examples

Positivity of prices

In order to guarantee that the price of the n assets stays a.s.
positive for all t ∈ [0,T ], we assume that

supp(νt) ⊆ X := {x ∈ Rn|xi ≥ −1 ∀i = 1, . . . , n}

and that νt(∂X ) = 0 for all t ∈ [0,T ].
Remark: When dealing with exponential additive processes, it is
usual to write them as eLt , with L a suitable additive process.
Equation (1) has solution

S i
t = eR i

t− 1
2

R t
0

Pn
j=1 σ

2
ij (s) ds

∏
0<s≤t

(1 + ∆R i
s)e−∆R i

s

with ∆R i
s := R i

s − R i
s−. Under the assumptions above,

1 + ∆R i
t > 0 P-a.s., so the S i , i = 1, . . . , n, are strictly positive

processes and can be written as eLi
t , with Li additive processes.



The model The HJB equation CRRA utility Analysis Examples

Positivity of prices

In order to guarantee that the price of the n assets stays a.s.
positive for all t ∈ [0,T ], we assume that

supp(νt) ⊆ X := {x ∈ Rn|xi ≥ −1 ∀i = 1, . . . , n}

and that νt(∂X ) = 0 for all t ∈ [0,T ].
Remark: When dealing with exponential additive processes, it is
usual to write them as eLt , with L a suitable additive process.
Equation (1) has solution

S i
t = eR i

t− 1
2

R t
0

Pn
j=1 σ

2
ij (s) ds

∏
0<s≤t

(1 + ∆R i
s)e−∆R i

s

with ∆R i
s := R i

s − R i
s−. Under the assumptions above,

1 + ∆R i
t > 0 P-a.s., so the S i , i = 1, . . . , n, are strictly positive

processes and can be written as eLi
t , with Li additive processes.



The model The HJB equation CRRA utility Analysis Examples

Finite variance

We also want the assets to have finite variance: a sufficient
condition for this to hold true is to impose that∫ T

0

(
‖µ(t)‖n + ‖σ(t)‖2

n×d +

∫
Rn

‖x‖2
n νt(dx)

)
dt < +∞ (2)

where ‖x‖2
n :=

∑n
i=1 x2

i and ‖A‖2
n×d :=

∑n
i=1

∑d
j=1 A2

ij . In fact, in
this case the process R has finite variance, and thus one can prove
that E[‖St‖2

n] < +∞ for all t ∈ [0,T ], i.e., the risky assets S i ,
i = 1, . . . , n have all finite variance.
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The investment portfolio

Let now ht := (h1
t , . . . , h

n
t ) be the proportions of the portfolio

invested respectively in the assets (S1, . . . ,Sn) at time t; then the
dynamics of the portfolio value V h can be written as

dV h
t =

n∑
i=1

V h
t−hi

t−
S i

t−
dS i

t = Vt−〈ht−, dRt〉 (3)

where 〈x , y〉 :=
∑n

i=1 xiyi denotes the scalar product in Rn.
In order for this dynamics to be well defined, V h must stay P-a.s.
positive for all t ∈ [0,T ].
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Positivity of portfolio

As before, V h as solution of Equation (3) can be written as

V h
t = e〈ht−,dRt〉− 1

2

R t
0 〈hs−,Σ(s)hs−〉 ds

∏
0<s≤t

(1+〈hs−,∆Rs〉)e−〈hs−,∆Rs〉

with Σ(t) = (aij(t))ij := σ(t)σT (t). To require V positive is thus
equivalent to requiring that 〈hs−,∆Rs〉 > −1 P-a.s. for all
t ∈ [0,T ], i.e. that

ht ∈ Ht := {h ∈ Rn | 〈h, x〉 > −1 νt(dx)-a.s. } (4)

for all t ∈ [0,T ].
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Example 1: unbounded jumps

If the jumps of all the risky assets are unbounded in both
directions, i.e.

supp(νt) ≡ X = {x ∈ Rn|xi ≥ −1, i = 1, . . . , n}

for all t ∈ [0,T ], then we get that

Ht ≡

{
h ∈ Rn | hi ≥ 0,

n∑
i=1

hi ≤ 1

}

i.e. in order for V to stay positive the process h can take values in
the n-dimensional unit simplex in Rn.
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Example 2: the 1-dimensional case

If n = 1 and supp(νt) = [−m(t),M(t)], with
−1 ≤ −m(t) ≤ 0 ≤ M(t) ≤ +∞ for all t ∈ [0,T ], then

Ht =

[
− 1

M(t)
,

1

m(t)

]
for all t ∈ [0,T ], as in Liu et al. (2003).
Particular cases:

only positive jumps: if m(t) ≡ 0, then the strategy h is
unbounded from above;

only negative jumps: if M(t) ≡ 0, then h is unbounded from
below;

unbounded jumps: if −m(t) ≡ −1 and M(t) ≡ +∞, then
Ht = [0, 1], i.e. the inverstor will never take a leveraged or
short position in the risky asset.
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Utility maximisation

We now fix a time horizon T in order to maximise, over the
strategy h, the expected utility

sup
h

E[U(V h
T )] (5)

where U is a CRRA utility function (e.g., U(x) = log x or

U(x) = x1−γ

1−γ with γ > 0, γ 6= 1).
For technical reasons, we work with bounded strategies h (as seen,
in many cases this is not a restriction): we assume that there exists
a closed bounded convex set H ⊂ Rn such that
H ⊂ int(∩t∈[0,T ]Ht), and we call a strategy h admissible (notation
h ∈ A[t,T ]), if it is predictable, hu ∈ H P-a.s. for all u ∈ [t,T ]
and Equation (3) has a unique strong solution V t,v for each initial
condition Vt = v .
With this assumptions, V h has finite variance for all h ∈ A[t,T ].



The model The HJB equation CRRA utility Analysis Examples

Utility maximisation

We now fix a time horizon T in order to maximise, over the
strategy h, the expected utility

sup
h

E[U(V h
T )] (5)

where U is a CRRA utility function (e.g., U(x) = log x or

U(x) = x1−γ

1−γ with γ > 0, γ 6= 1).
For technical reasons, we work with bounded strategies h (as seen,
in many cases this is not a restriction): we assume that there exists
a closed bounded convex set H ⊂ Rn such that
H ⊂ int(∩t∈[0,T ]Ht), and we call a strategy h admissible (notation
h ∈ A[t,T ]), if it is predictable, hu ∈ H P-a.s. for all u ∈ [t,T ]
and Equation (3) has a unique strong solution V t,v for each initial
condition Vt = v .
With this assumptions, V h has finite variance for all h ∈ A[t,T ].



The model The HJB equation CRRA utility Analysis Examples

Utility maximisation

We now fix a time horizon T in order to maximise, over the
strategy h, the expected utility

sup
h

E[U(V h
T )] (5)

where U is a CRRA utility function (e.g., U(x) = log x or

U(x) = x1−γ

1−γ with γ > 0, γ 6= 1).
For technical reasons, we work with bounded strategies h (as seen,
in many cases this is not a restriction): we assume that there exists
a closed bounded convex set H ⊂ Rn such that
H ⊂ int(∩t∈[0,T ]Ht), and we call a strategy h admissible (notation
h ∈ A[t,T ]), if it is predictable, hu ∈ H P-a.s. for all u ∈ [t,T ]
and Equation (3) has a unique strong solution V t,v for each initial
condition Vt = v .
With this assumptions, V h has finite variance for all h ∈ A[t,T ].



The model The HJB equation CRRA utility Analysis Examples

Dynamic programming

We define Jh(t, v) := E[U(V h;t,v
T )] and the value function as

J(t, v) := sup
h∈A[t,T ]

Jh(t, v) = sup
h∈A[t,T ]

E[U(V h;t,v
T )] (6)

where {V t,v
s , s ≥ t} is the solution of Equation (2) with initial

condition Vt := v > 0, the second equality being justified by the
Markovianity of V . The initial problem is thus equivalent to
calculate J(0,V0).
It is well known that, by the dynamic programming principle, for all
u such that t + u ≤ T we can write

J(t, v) = sup
h∈A[t,T ]

E[E[U(V h;t,v
T )|Ft+u]] =

= sup
h∈A[t,T ]

E
[

U

(
V

h;t+u,V h;t,v
t+u

T

)]
=

= sup
h∈A[t,t+u]

E[J(t + u,V h;t,v
t+u )]
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The HJB equation

By formal arguments (Itô’s formula on J, limit for u → 0), we
arrive to the HJB (Hamilton-Jacobi-Bellman) equation

∂J

∂t
(t, v) + sup

h∈A
AhJ(t, v) = 0 (7)

with

AhJ(t, v) =
∂J

∂v
(t, v)v〈h, µ(t)〉+

1

2
v 2〈Σ(t)h, h〉∂

2J

∂v 2
(t, v)+

+

∫
Rn

(
J(t, v + v〈h, x〉)− J(t, v)− v〈h, x〉∂J

∂v
(t, v)

)
νt(dx)

and terminal condition

J(T , v) = U(v) (8)
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The verification theorem

Theorem (Verification Theorem). Let K be a classical solution
to the HJB equation with terminal condition J(T , v) = U(v) and
such that the Dynkyn formula

E[f (T ,V h
T )]− E[f (t,V h

t )] = E
[∫ T

t
Ahu f (u,V h

u ) du

]
holds for all h ∈ A[t,T ]. Then, for all (t, v) ∈ [0,T ]× R:

(a) K (t, v) ≥ Jh(t, v) for every admissible control h ∈ A[t,T ];

(b) if there exists an admissible control h∗ ∈ A[t,T ] such that

h∗s ∈ arg max
h

AhK (s,V h
s ) P-a.s. for all s ∈ [t,T ],

then K (t, v) = Jh∗(t, v) = J(t, v).



The model The HJB equation CRRA utility Analysis Examples

The verification theorem

Theorem (Verification Theorem). Let K be a classical solution
to the HJB equation with terminal condition J(T , v) = U(v) and
such that the Dynkyn formula

E[f (T ,V h
T )]− E[f (t,V h

t )] = E
[∫ T

t
Ahu f (u,V h

u ) du

]
holds for all h ∈ A[t,T ]. Then, for all (t, v) ∈ [0,T ]× R:

(a) K (t, v) ≥ Jh(t, v) for every admissible control h ∈ A[t,T ];

(b) if there exists an admissible control h∗ ∈ A[t,T ] such that

h∗s ∈ arg max
h

AhK (s,V h
s ) P-a.s. for all s ∈ [t,T ],

then K (t, v) = Jh∗(t, v) = J(t, v).



The model The HJB equation CRRA utility Analysis Examples

The verification theorem

Theorem (Verification Theorem). Let K be a classical solution
to the HJB equation with terminal condition J(T , v) = U(v) and
such that the Dynkyn formula

E[f (T ,V h
T )]− E[f (t,V h

t )] = E
[∫ T

t
Ahu f (u,V h

u ) du

]
holds for all h ∈ A[t,T ]. Then, for all (t, v) ∈ [0,T ]× R:

(a) K (t, v) ≥ Jh(t, v) for every admissible control h ∈ A[t,T ];

(b) if there exists an admissible control h∗ ∈ A[t,T ] such that

h∗s ∈ arg max
h

AhK (s,V h
s ) P-a.s. for all s ∈ [t,T ],

then K (t, v) = Jh∗(t, v) = J(t, v).



The model The HJB equation CRRA utility Analysis Examples

CRRA utility

We now consider a CRRA utility function, i.e. U(v) = v1−γ

1−γ with
γ > 0, γ 6= 1 or U(v) = log v (”γ = 1”), and search for a solution
of the kind J(t, v) = U(eϕ(t)v), with ϕ(t) deterministic function
of time with terminal condition ϕ(T ) = 0.
After some calculation (and dividing for (veϕ(t))1−γ) the HJB
equation becomes

0 = ϕ′(t) + sup
h∈A

F (t, h)

where F (t, h) does not depend on v anymore!
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CRRA utility, cont.

The function F is defined for γ 6= 1 as

F (t, h) := 〈h, µ(t)〉 − 1

2
γ〈A(t)h, h〉+

+

∫
Rn

[
1

1− γ

(
(1 + 〈h, x〉)1−γ − 1

)
− 〈h, x〉

]
νt(dx)

and for γ = 1 as

F (t, h) := 〈h, µ(t)〉−1

2
〈Σ(t)h, h〉+

∫
Rn

(
log(1+〈h, x〉)−〈h, x〉

)
νt(dx)

The function F is strictly concave on h, as the sum of a linear
function, a nonpositive quadratic form and a strictly concave
function. Thus, being F strictly concave on the convex set H,
there exists a unique solution h∗ ∈ H.
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CRRA utility: the optimal strategy

 the optimal strategy h∗(t) only depends on µ(t), σ(t) and
νt(dx). Thus, it is totally myopic, i.e. it does not depend on V or
S i , i = 1, . . . , n, nor on the time to maturity T − t (quite typical
of CRRA utility functions with additive processes).
In the time-homogeneous case, i.e. when µ(t) ≡ µ, σ(t) ≡ σ and
νt ≡ ν, the optimal strategy h∗ consists in investing wealth
proportions in each risky asset which are constant in time.
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CRRA utility, concl.

Define now λ(t) := F (t, h∗(t)); then the HJB equation becomes

0 = ϕ′(t) + λ(t)

with terminal condition ϕ(T ) = 0, and we have

ϕ(t) =
∫ T
t λ(u)du, and

J(t, v) = U(veϕ(t))

After checking for the Dynkyn formula (integrability conditions),
the verification theorem allows us to conclude that this is the value
function of our optimization problem.
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First-order condition

We now make the assumption that h∗ satisfies the first-order
condition

0 = µ(t)− γΣ(t)h∗(t) +

∫
Rn

x((1 + 〈h∗(t), x〉)−γ − 1) νt(dx) (9)

The fact that the first-order condition (9) has a solution
h∗(t) ∈ H has to be verified case by case: see the examples at
the end for numerical cases when this does NOT happen.

Even proving that for all t ∈ [0,T ] the first-order condition
(9) has a solution h∗ ∈ Ht (i.e. somewhere in the admissible
values) does not seem an easy task: in fact, even in the
time-homogeneous case (Kallsen 2000) this is assumed and
not proved.

In some particular cases, the existence of an optimal
h∗(t) ∈ H can be proved (Korn et al. 2003 for the logarithmic
case, Callegaro-V. 2009 for the general case).
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time-homogeneous case (Kallsen 2000) this is assumed and
not proved.

In some particular cases, the existence of an optimal
h∗(t) ∈ H can be proved (Korn et al. 2003 for the logarithmic
case, Callegaro-V. 2009 for the general case).
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A decomposition for h∗t

Now we compare our solution with the case when there are no
jumps, i.e. νt ≡ 0 for all t ∈ [0,T ]. If the optimal portfolio
proportions h∗ satisfy (9) and the Σ(t) are positive definite for all
t ∈ [0,T ] (i.e., d ≥ n and the σ(t), t ∈ [0,T ] have all full rank n),
then

h∗t =
1

γ
Σ−1(t)(µ(t)− µJ

t (h∗t )) =
1

γ
Σ−1(t)µ(t)− 1

γ
Σ−1(t)µJ

t (h∗t )

where, for all h ∈ H, t ∈ [0,T ], µJ
t (h) is the vector defined by

µJ
t (h) :=

∫
Rn

x(1− (1 + 〈h, x〉)−γ) νt(dx)

which can be interpreted as a ”jump dividend”, i.e. a term which
subtracts (if positive) something from the yield of the risky assets.
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Analysis

In the general n-dimensional case, however, one cannot say if
µJ

t (h∗t ) has all positive components or not, and even in this case
one has to take into account the fact that Σ(t) can possibly be
non-diagonal and transform positive vectors in vectors with some
negative components.
The situation is different when n = 1: in this case we generalise a
result of Framstad et al. (1998) and find out that the fraction of
optimal portfolio invested in the risky asset in the presence of
jumps is always less in absolute value than the corresponding
fraction without jumps, and always with the same sign.
In mathematical terms, if σ(t) > 0 for all t ∈ [0,T ], then for all
t ∈ [0,T ] one of the following holds:

0 ≤ h∗t ≤
µ(t)

γσ2(t)
or

µ(t)

γσ2(t)
≤ h∗t ≤ 0
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Second-order approximation

We can give another interpretation of this result, supported by
strong numerical evidence, by making a first-order approximation
in Equation (9):

0 = µ(t)− γΣ(t)h̃ +

∫
Rn

x(1− γ〈h̃, x〉+ o(γ〈h̃, x〉)− 1) νt(dx)

By neglecting the term o(γ〈h̃, x〉), one arrives at

µ(t)− γ
n∑

j=1

aij(t)h̃j − γ
n∑

j=1

∫
Rn

xixj h̃jνt(dx) = 0

We can now collect the vector h̃, which now appears linearly.
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Second-order approximation, cont.

We obtain the approximation

µ(t)− γ[Σt + Ct ]h̃ = 0 (10)

where Ct = (Cij(t))ij is the second moment matrix of the Levy
measure νt , defined as

Cij(t) :=

∫
Rn

xixjνt(dx)

(notice that Σt + Ct is then the local covariance matrix of the
n-dimensional driving process R). Finally one can think to
approximate the optimal portfolio proportions with

h∗t ' h̃t :=
1

γ
[Σt + Ct ]−1µ(t) (11)

i.e., the optimal portfolio proportions are near to the corresponding
ones in the no-jump case when we substitute the volatility matrix
Σt with the total covariance matrix Σt + Ct .
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The Kou model

The Kou model is a jump-diffusion 1-dimensional model.
Levy density, ordinary exponential form (St = eLt ):

νL(dx) = λ(1− p)η+e−η+x1{x>0} dx + λpη−eη−x1{x<0}dx

with η+ > 1, η− > 0 and p ∈ [0, 1].
Levy density, stochastic exponential form (dSt = St− dRt):

ν(dx) = λ(1−p)η+(1+x)−η+−11{x>0} dx+λpη−(1+x)η−−11{−1<x<0}dx

Numerical example with η+ = 10, η− = 5, λ = 1, p = 0.4,
σ = 0.16 and µ = 0.0328. Plug these values in Equation (9) for
different values of γ from 0.2 to 2 and compare the results with
the analogous optimal portfolios in the purely diffu-
sive case, both with the original volatility and with the total variance:
γ 0.2 0.6 1 (log) 1.4 1.8

h∗ max H 0.83690 0.51773 0.37345 0.29183

h∗, no jumps 6.40625 2.13542 1.28125 0.91518 0.71181

h∗, 2nd order 2.67474 0.89158 0.53495 0.38211 0.29719
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The Variance Gamma model (1 dim.)

The Variance Gamma model is an infinite activity model, which
usually is used without a diffusion component.
Levy density, ordinary exponential form (St = eLt ):

νL(dx) =
ce−λ+x

x
1{x>0}dx +

ce−λ−|x |

|x |
1{x<0}dx

with λ+ > 1 and λ−, c > 0.
Levy density, stochastic exponential form (dSt = St− dRt):

ν(dx) =
c(1 + x)−λ+−1

log(1 + x)
1{x>0}dx − c(1 + x)λ−−1

log(1 + x)
1{−1<x<0}dx

Usual interpretation: the Variance Gamma model is what results
when the log-price follow a Brownian motion with drift, but with a
discontinuous time change given by a so-called Gamma process G :

Lt := (θu + σBu)|u=G(t)
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The Variance Gamma model, cont.

Since the Variance Gamma model has infinite variation, we do not
need to add also a Brownian component. We can however make a
comparison between this model and a geometric Brownian motion
with the same first two moments.
Numerical example with λ+ = 39.78, λ− = 20.26, c = 5.93 and
µ = 0.005. This time we compare the results with the analogous
optimal portfolios for a GBM with the same first two moments:

γ 0.2 0.6 1 1.4 1.8

h∗ max H max H 0.77569 0.55825 0.43597

h∗, 2nd order 3.81986 1.27329 0.76397 0.54569 0.42443
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A multidimensional example (Callegaro-V. 2009)

Assume that ν :=
∑m

j=1 λjδc j , with λj > 0, c j := (c j
1, . . . , c

j
n) ∈ X

and δx is the Dirac delta centered in x , i.e. the measure such that
δx(B) = 1B(x). This corresponds to N being the random Poisson
measure corresponding to a multivariate Poisson process.
In this case, the first order conditions read

0 = µi − γ
n∑

j=1

aijhj +

∫
Rn

[(
1 + 〈h, x〉

)−γ
xi − xi

]
ν(dx) =

= µi − γ
n∑

j=1

aijhj +
m∑

i=1

λjc
j
i

[(
1 + 〈h, c j〉

)−γ
− 1

]
∀i = 1, . . . , n

both for the log-case (γ = 1) as for the power case (γ 6= 1).
These conditions can be shown to have a unique solution
h∗ ∈ int(H), and are equivalent to the conditions already found in
Callegaro-V. (2009).
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