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Numeraire portfolio and growth optimality without t.c.

The basic model (without transaction costs)

» Discrete time, arbitrage-free model with bond B and stock prices S

B,=1, S5,>0, n=0,...N,
whose evolution is given w.r.t. the physical measure P.
As Filtration we use F,, = o(So, S1, ..., Sn), Fo trivial.
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» An equivalent martingale measure (EMM) Q satisfies Q ~ P
and Eq[Spi1 | Fn] =Sn, n=0,....,N—1.
» Fundamental theorems of asset pricing

> No arbitrage opportunities exist if and only if there is
at least one EMM Q.

> In this case: Market is complete if and only if Q is unique.

» For any EMM Q@ an arbitrage free price for a claim C is

d
bro(C) = BolC] = BIZJ €], 2§ := 92,
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Numeraire portfolio and growth optimality without t.c.

The numeraire portfolio

» For a self-financing trading strategy ¢ we can compute wealth X7,
n=20,...,N. We would like to find ¢ such that

pr(C) :=E[ZJ C]=E [)%] .
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The numeraire portfolio

» For a self-financing trading strategy ¢ we can compute wealth X7,
n=20,...,N. We would like to find ¢ such that
pr(C) :=E[ZJ C]=E [)2,] :
N
» This can be done, if we can find a trading strategy ¢* for
X5 = xo = 1 such that X > 0 and we have martingales

1/Xy, So/Xy, n=0,...,N.
©* is then called the numeraire portfolio (cf. Long (1990)).
» Ansatz: Choose ¢* growth optimal, E[log Xy] = max E[log(X})].
This works in a complete market, since Xy = X()/Z,\CI) is maximizing
Ellog(Xn)] — y(Eq[Xn] — x0) = Ellog(Xn) — yZy Xn] + y Xo-
In an incomplete market this might not work, since for
V(z) = sup{log(x) —xz : x >0} =log(1/z) — 1

Xy = ;—j’v E[V(Z;)] = inf{E[V(Z)] : ZEMM}
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Discrete time model with transaction costs

Model specification

» We assume Sp11 = Sp(1 + Rot1) with returns R, i.i.d. like R,
R<R<R, -1<R<0<R, E[(R-R)'=E[R-R)™"]=o0.
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Discrete time model with transaction costs

Model

specification

We assume S, 11 = Sp(1 + Rpy1) with returns R, i.i.d. like R,
R<R<R, -1<R<0<R, E[(R-R)'=E[R-R)™"]=o0.

7, Xp risky fraction and wealth before the transaction,

Tn, Xp risky fraction and wealth after the transaction.
For traded amount A, and proportional costs A, 1 € [0,1) we get

stock account T X, = Xy + A,

bond account (1—7n)Xn=1—m)Xn — B(A,)A,,

1+X A>0 buy,
where ﬂ(A)—{ l-u A<O selil.

At N we liquidate our portfolio and may have liquidation costs L, i.e.
v =0, YN = (1 — 7TN)XN + L(ﬂ'N)ﬂ'NXN.
E.g. L(m) = B(—7) or L(7) =1, in general

_ 1—puy m>0 sell
L(W)_{lJr/\N <0 buy.
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Discrete time model with transaction costs

Growth optimality under transaction costs

Admissibility of a trading strategy ¢ = (A,)n=0,...,n—1 is defined by
Xy >0, 1—my+L(my)my > 0.
Theorem: An optimal admissible policy ¢* exists, i.e.

E[log(Xy)] = sup Ellog(Xy)]-

padm.

The optimal policy is characterized by risky fractions a, < b, s.t.

an, ifm<ap buy region,
Th=14 mh, if wk € [an, by] no-trading region,

b, if w5 > b, sell region.

References: Kamin 75, Constantinides 79, .. ..
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Discrete time model with transaction costs

Growth optimality under t.c. — about the proof

» Look at Y, = m,X,, Z, = (1 — 7,)X, and value function
Viy, 2) = supEllog(Yn + Zn) | Yo =y, Z, = 2]
%)

for those ¢ = (Ap)n=o,... n—1 for which (Y, Z,) in solvency region.
Note that V5(0,x0) = E[log(Xy)].
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Growth optimality under t.c. — about the proof

» Look at Y, = m,X,, Z, = (1 — 7,)X, and value function
Viy, 2) = supEllog(Yn + Zn) | Yo =y, Z, = 2]
%)

for those ¢ = (Ap)n=o,... n—1 for which (Y, Z,) in solvency region.
Note that V5(0,x0) = E[log(Xy)].
» Show by backward induction that
> V, is concave, increasing, and V,(ay, az) = log(a) + Va(y, z).

> The maximum on the sell- and buy-lines is attained.
> The optimality equation holds:

Va(y, 2) = max E[Vos1((y + B)Rns1, 2 = B(A))]-

» Unique maximizers A* exist. They define the optimal strategy *
and can be represented in terms of 7, = Y,/ X,.

» Main problems: One-sided derivatives for first order conditions might
not be continuous at 0. Since short selling and borrowing are
allowed, existence of an optimizer can be delicate.
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Discrete time model with transaction costs

Properties of the boundaries of the trading regions

In continuous time for terminal trading time T = 1 and without short
selling/borrowing we get (Kunisch/S. 07)

0.2 B

0.2 0.4 0.6 0.8 1

No liquidation costs
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Discrete time model with transaction costs

Properties of the boundaries of the trading regions

In continuous time for terminal trading time T = 1 and without short
selling/borrowing we get (Kunisch/S. 07)

x 1n
0.8 S
0. GM\F- T W
. 0.4
0.2 B 0.2
0.2 0.4 0.6 0.8 1 t 0.2 0.4 0.6 0.8 1 t
No liquidation costs With liquidation costs

In our model we can prove
> Suppose Av =\, uy = p. If (ER)N , then for

=inf{n : (ER)N-" < 11+,j\ } we have a,, =0 for all n > ny.

> Suppose Av =0, uy =0.
Then 0 € (an, by) as long as (ER)V=" € (1 — p, 1+ N).

1+)\
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Consistent price systems under transaction costs

A simple example without transaction costs

» Without transaction costs, the price of a hedgable claim is given by
the initial value of a replicating portfolio, if the latter exists.
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> In a complete one-period binomial model with two states u = up,
d = down any claim can be hedged. E.g.

Si(u)y=5 C(u)=2
/
S=3 Claim
to be priced
N\
Si(d) =5/2 C(d)=0

Remember, By = B; = 1.
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» Without transaction costs, the price of a hedgable claim is given by
the initial value of a replicating portfolio, if the latter exists.

> In a complete one-period binomial model with two states u = up,
d = down any claim can be hedged. E.g.

Si(u)y=5 C(u)=2
/
S=3 Claim
to be priced
N\
Si(d) =5/2 C(d)=0

Remember, By = B; = 1.

> The replicating strategy (buy 4/5 stocks, sell 2 bonds) leads to
price 2/5.

9/18



Consistent price systems under transaction costs

Transaction costs and bid/ask prices

Possible prices S in 2-period CRR
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Consistent price systems under transaction costs

A "simple” example with transaction costs

» Roux and Zastawniak (2006) show that a price system based on
replication may lead to arbitrage, using the following example:

Spo(u) = 6 (CB(u), C>(uv)) = (2,0)
/o S(n) =4
Sgsk =5 Claim
Spid =1 to be priced
N Sik(d) =3
Spid(d) =2 (CB(d), €>(d)) = (0,0)
This corresponds to prices and costs
So=3 S5,=5,5=5/2

A=pu=2/3 A\ =u =1/5.
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So=3 S,=5,5,=5/2
A=pu=2/3 A\ =u =1/5.

> A replicating strategy (buy 1 stock, sell 2 bonds) leads to price 3.
> A simple superhedging strategy costs 2 (buy 2 bonds).
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Consistent price systems under transaction costs

Option pricing by hedging under t.c.

» Pricing by (super)replication

> Leland 85
Merton 90
Bensaid/Lesne/Pageés 92
Boyle/Vorst 95
Stettner 97
Roux/Tokarz/Zastawniak 08

vVvyvYVvyy
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> Leland 85
Merton 90
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Boyle/Vorst 95
Stettner 97
Roux/Tokarz/Zastawniak 08

» Continuous time limit

> Soner/Shreve/Cvitani¢ 95
» Bouchard/Kabanov/Touzi 00

» Consistent price systems

> Kusuoka 95

Jouini/Kallal 95

Kabanov 99

Koehl/Pham/Touzi 01
Schachermayer 04
Guasoni/Résonyi/Schachermayer 07
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Consistent price systems under transaction costs

EMM under transaction costs for one period

» For one period the gain following a self-financing trading strategy is
G? =9 (5 —S), ¢ (number of stocks bought at 0).

For an EMM Q we have Eg[G¥] = 0.
Thus G¥ > 0 implies P(G¥ > 0) = 0 for any ¢ (no arbitrage).
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» For one period the gain following a self-financing trading strategy is
G? =9 (5 —S), ¢ (number of stocks bought at 0).
For an EMM Q we have Eg[G¥] = 0.
Thus G¥ > 0 implies P(G¥ > 0) = 0 for any ¢ (no arbitrage).
» Under t.c. we need instead of an EMM a pair (p = (po, p1), Q) s-t.
1—p<po,p1 <1+A  Eqlp151] = poSo.

» With liquidation at 1, we have for ¢ > 0 gain

G =9 (1—p)sS5 —(1+A)S)
and thus
Eq[G”?] < ¢ Eq[p1S1 — poSo] = 0.

Similar for ¢ <0
EQ[G*] = Eqlp((14A)S1—(1-p)S0)] = | Eo[(1—4)So—(14+A)5:] < 0.
Thus Eg[G¥] <0 for any ¢ and G¥ > 0 implies P(G¥ > 0) = 0.
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Consistent price systems under transaction costs

Towards EMMs / consistent price systems under t.c.

Possible paths in 8-period CRR One path in 8-period CRR
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Consistent price systems under transaction costs

Towards EMMs / consistent price systems under t.c.

Y

Possible paths in 8-period CRR One path in 8-period CRR

Y

One path in 8-period CRR Path of ajusted price process
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Construction of the numeraire portfolio under t.c.

Consistent price systems under transaction costs

» Q@ is an EMM for factor (pn)n=o,...n, if

(1) Q ~P.
(2) pn Fn-measurable, 1 — p < pp, <14+ X 1—pun < pnv <1+ Ay
(3) (pnSn)n=o,...,n martingale under Q.
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» Q@ is an EMM for factor (pn)n=o,...n, if

(1) @
(2) pn Fo-measurable, 1 — p < pp <14+ X 1—puy < py <1+ Ay
(3) (pnSn)n=o,...,n martingale under Q.

» A consistent price system for claims C = (CB, C°) can then be
defined by
pr(C) = Eq[CB + pn C°]
This is a one-to-one relationship: Kusuoka 95, Jouini/Kallal 95, ...

» We want
[CB +pNC5]

pr(C)=E Hy

» Ansatz: Choose py = L(7},) and Hy = X (growth optimal), i.e

Hy = Xy(1 — 7y + pamy)-
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Construction of the numeraire portfolio under t.c.

Numeraire portfolio under transaction cots

Choosing py = L(n%,) and Hy = Xy = X;i(1 — 7% 4 pn 75), we need to
define p, and H, such that

) H,'pnShis a P-martingale.
» (N2) H;lisa P-martingale.

) 1—pu<p, <1+

) E[Hy'l=1.

16/18



Construction of the numeraire portfolio under t.c.

Numeraire portfolio under transaction cots

Choosing py = L(n%,) and Hy = Xy = X;i(1 — 7% 4 pn 75), we need to
define p, and H, such that

» (N1)  H,;1p,S, is a P-martingale.

» (N2) H;lisa P-martingale.

» (N3) 1-pu<p, <1+

» (N4) E[Hy']=1.
To get (N1) We define H, = X}(1 — 7, + pn m,), where

Bl + Ru)Hyly | Fl.
E[H, 5 | 7]

16/18



Construction of the numeraire portfolio under t.c.

Numeraire portfolio under transaction cots

Choosing py = L(n%,) and Hy = Xy = X;i(1 — 7% 4 pn 75), we need to
define p, and H, such that

» (N1)  H,;1p,S, is a P-martingale.

» (N2) H;lisa P-martingale.

» (N3) 1-pu<p, <1+

» (N4) E[Hy']=1.
To get (N1) We define H, = X}(1 — 7, + pn m,), where

Bl + Ru)Hyly | Fl.
E[H, 5 | 7]

Theorem: (N2) and (N3) hold.

Corollary: E.g. for xo = 1, 1o = 0 we have Hy = 1. Thus (N4) holds.

16/18



Construction of the numeraire portfolio under t.c.

Numeraire portfolio under transaction cots

Choosing py = L(n%,) and Hy = Xy = X;i(1 — 7% 4 pn 75), we need to
define p, and H, such that

» (N1)  H,;1p,S, is a P-martingale.
» (N2) H;lisa P-martingale.

» (N3) 1-pu<p, <1+

» (N4) E[Hy']=1.

To get (N1) We define H, = X*(1 — 7, + p, ms), where

Bl + Ru)Hyly | Fl.
E[H, 5 | 7]

Theorem: (N2) and (N3) hold.
Corollary: E.g. for xo = 1, 1o = 0 we have Hy = 1. Thus (N4) holds.

Interpretation: p, is a liquidation factor adjusted to the fact that one
behaves optimally in n,..., N and liquidates at N according to L.

Relation to shadow prices:Cvitani¢/Karatzas 96,Kallsen/Muhle-Karbe 08
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Extensions and conclusion

Some extensions

» Time dependent A\, pp.

> Previsible interest rates.

» Not identically distributed R,,.
» Okay for L = 1.

» Otherwise more conditions needed to guarantee p, € [1 — u, 1 + A].

—1lya

» Using power utility U,(x) = a~'x® instead of U(x) = log(x) works
similar, yielding price systems

CB+ aCS
pra(C) = . |
N

where _
dQ* _ U'(HR)Hy
dP— E[U((HR)HR]

(Q™, Hy) is called numeraire pair.
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Extensions and conclusion

Summing up: Numeraire portfolio under t.c.

To price contingent claims C = (CB, C®) under prop. t.c. we proceed by

» choosing a liquidation factor L = L(7),

» finding 7%, X;* for growth optimal ©* by solving sup E[log(X )],
wadm.

> setting py = L(7}) and defining the adjusted value process
Hy =Xy = Xp(1 =y + pn i), Hyt = E[Hy' | Fal,
getting the adjustment factor from H, = X (1 — 7} + p, %),
» starting with Hp =1 (e.g. xo = 1, mo = 0), define Q by % = Hﬁl.

Then, Q is an EMM for factor p and thus

B S
pr: C:(CB7CS)|_)E|:C_‘_pNC:|

Hpn

is a consistent price system.
18/18
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