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$ 1. Introduction and literature review

• Consider a discrete-time economy with time index set T =

{t|t = 0,1,2, · · · , T}

• Let M := {Mt}t∈T be a non-negative, F-adapted stochastic
discount factor (SDF) process defined on (Ω,F ,P)

• The price at time t, Πt, of a payoff at t + 1, Xt+1:

Πt = EP

[
Mt+1Xt+1|Ft

]
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• ct denotes consumption at t

• u(ct) is the utility function

• ρ is the impatient factor of the economic agent per unit of
time

• The first-order condition for an optimal consumption and
portfolio choice:

Mt+1 = e−ρu′(ct+1)

u′(ct)
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• The log return process, yt, under the physical measure P :

yt = rt + λtσt − κP
εt
(σt) + σtεt

εt ∼ F (0,1)

σt = a(σt−1, σt−2, ...σ1, εt−1, εt−2, ..., ε1) .

• κP
εt
(z) := lnMP

εt
(z) = lnEP [ezεt|Ft−1] < ∞, |z| < h

• If Q is an equivalent martingale pricing measure, it can be
related to the SDF by the following Radon-Nikodym deriva-
tive:

dQ

dP

∣∣∣∣∣
FT

:= exp

( T∑
t=1

rt

) T∏
t=1

Mt .
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• Rubinstein (1976) and Brennan (1979) - risk-neutral valua-
tion relationship (RNVR) - joint normality of asset returns
and marginal utility of consumption.

• Camara (1999) - extended the RNVR when the aggregate
consumption and the random payoff of the underlying asset
follow a bivariate three parameter lognormal distribution -
closed form solutions for European call options under this
setting

• Camara (2003) - proposed a new set of equilibrium RNVRs
- aggregate wealth and underlying asset have transformed
normal distributions
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Elliot and Madan (1998) - extended Girsanov principle

• The Radon-Nikodym derivative:

dQ

dP

∣∣∣∣∣
FT

:=
T∏

t=1

fεt(εt + λt)

fεt(εt)

• fεt - the Ft−1-conditional pdf of yt under P

• Consistent with hedging strategies that minimize the risk-
adjusted cost of hedging

• Schroder (2004) - relates this transformation to equilibrium
pricing measures for some special cases of distributions of
the return process
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§3. Conditional Esscher transform and equilibrium mea-
sures

• Definition 1 Let θt be an Ft predictable process, for each
t ∈ T \{0}). The probability measure Qess defined by:

dQess

dP

∣∣∣∣∣
FT

=
T∏

t=1

eθtyt

MP
yt|Ft−1

(θt)

is called the conditional Esscher transformed measure of P ,
generated by the return processes y and the family θ of Ess-
cher parameters, with respect to the filtration F .

• the Esscher parameter θt is the solution of the following equa-
tion:

MP
yt|Ft−1

(1 + θt) = ertMP
yt|Ft−1

(θt) .
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Proposition 1 Suppose the following conditions hold:

(a) The utility function u is of exponential form:

u(ct) =
1− e−Rct

R

(b) for any t ∈ T , the change in aggregate consumption satisfies
the following, time-series, regression model under P :

∆ct = αt + βtyt + γtηt , t ∈ T \{0}

where ηt ∼ F (0,1) iid and independent of yt

Then an equivalent martingale measure based on the equilibrium
SDF coincides with that from the conditional Esscher transform.
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• θt = −Rβt , t ∈ T \{0}

• The Esscher parameter is proportional to the “beta” risk in
the changes of aggregate consumption explained by the re-
turn of the risky asset.

• R is the coefficient of absolute risk aversion

• The market price of risk:

λt =
κP

εt
(σt) + κP

εt
(−Rβtσt)− κP

εt
((1− Rβt)σt)

σt
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Proposition 2 Suppose the following conditions hold:

(a) The utility function u is of isoelastic form:

u(ct) =
c1−R
t − 1

1− R

(b) for any t ∈ T , the change in logarithm aggregate consump-
tion satisfies the following, time-series, regression model un-
der P :

∆ln ct = αt + βtyt + γtηt , t ∈ T \{0} .

where ηt ∼ F (0,1) iid and independent of yt

Then an equivalent martingale measure based on the equilibrium
SDF coincides with that from the conditional Esscher transform.
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• Consistency with consumption CAPM based on recur-
sive utility - Epstein and Zin (1989, 1991)

• The level of utility at any time point t be:

Ut = W (ct, E[U%
t+1|Ft]

1/%), 0 6= % < 1 .

• % is the risk aversion parameter and the degree of risk aversion
increases as % does; W is the “aggregator” function having
the following form:

W (c, z) = [(1− e−ρ)cφ + e−ρzφ]1/φ, 0 6= φ < 1

• c and z are both positive; φ is a parameter which reflects the
inter-temporal substitution; ρ is the impatience factor
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• % = 1−R, where R is the constant coefficient of relative risk
aversion

• The maximization problem leads to:

EP
[
e−ρς

(
ct

ct−1

)ς(φ−1)( Smt

Smt−1

)ς−1 St

St−1

∣∣∣∣Ft−1

]
= 1, ∀ t ∈ T .

where Smt is the price index of the market portfolio at time
t and ς = %/φ

• The equilibrium SDF:

Mt = e−ρς
(

ct

ct−1

)ς(φ−1)( Smt

Smt−1

)ς−1
, ∀ t ∈ T .
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Proposition 3 For any t ∈ T , we assume that the changes in
the logarithm of the aggregate consumption and the return on
the market portfolio, ymt := ln(Smt/Smt−1), satisfy the following
regression model under P :

(∆ln ct, ymt)
T = αt + βtyt + diag(ηt)γt .

Here αt := (α1t, α2t)
T , βt := (β1t, β2t)

T , γt := (γ1t, γ2t)
T are

2-dimensional F-predictable processes and ηt := (η1t, η2t)
T is a

2-dimensional vector of i.i.d. random variables with η1t, η2t ∼
F (0,1) independent of yt for any t ∈ T and also independent of
each other. Here diag(ηt) is the diagonal matrix formed with the
elements of ηt.

Then an equivalent martingale measure based on the above equi-
librium SDF is consistent with that from the conditional Esscher
transform.
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• The Esscher parameter is given by:

θt = ς(φ − 1)β1t + (ς − 1)β2t .

• θt - weighted average between a fraction of the “beta” risk in
the changes of logarithm aggregate consumption explained
by the return of the risky asset and the negative “beta” risk
of the return on the market portfolio explained by the return
on the risky asset

• If ς = 1, then θt = −Rcov(∆ log ct, yt)/σ2
t - same as standard

CAPM

• If ς = 0, then θt = cov(ymt, yt))/σ2
t
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§4. Conditional Esscher-Girsanov transform and its gener-
alization

• The conditional Esscher-Girsanov transform was introduced
by Goovaerts and Laeven (2008)

• Define the function Ψ(εt):

Ψ(εt) = Φ−1(F (εt))

• Φ is the cdf of a standard normal random variable

• Ψ(εt) is a standard normal random variable under P condi-
tional on Ft−1.
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Definition 2 (Conditional Esscher-Girsanov transform) Let δ :=

{δt}t∈T be an F -predictable process and let h be a positive con-
stant. The probability measure Qessg defined by:

dQessg

dP

∣∣∣∣∣
FT

=
T∏

t=1

ehδtσtΨ(εt)−1
2h2δ2t σ2

t

is called the conditional Esscher-Girsanov transformed measure
of P with respect to the filtration Ft for parameter h and penalty
process δ.

1. The reason of having 2 parameters is to separate the risk
aversion parameter from the risk premium

2. If h = 1, the Radon-Nikodym derivative resembles a condi-
tional version of Wang transform.
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Proposition 4 Under Qessg the risk-neutralized dynamics of the
asset return process are given by:

yt = mt + σtΨ
−1(ξt + hδtσt), ξt ∼ N(0,1)

σt = a(σt−1, σt−2, ...,Ψ−1(ξt−1 + hδt−1σt−1),Ψ
−1(ξt−2 + hδt−2σt−2), ...)

where ξt is a sequence of i.i.d. standard Gaussian random vari-
ables under Qessg, and h and δt satisfy:

MP
(εt,Ψ(εt))|Ft−1

(σt, hδtσt) = ert−mt+
1
2h2δ2t σ2

t

Note: This is similar to the risk neutralized dynamic obtained by
Duan (1999) using his generalized local RNVR
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Proposition 5 Let Ξ(ct) be the inverse Gaussian transformation
of ct through its conditional c.d.f. (ie. Ξ(ct) is standard normally
distributed conditional on Ft−1). If Ψ(εt) and ∆Ξ(ct) have a
conditionally bivariate normal distribution with respect to Ft−1

under P and the marginal utility function is of the form:

u′(ct) = e−RΞ(ct), R > 0

then the risk neutral measure constructed based on the stan-
dard equilibrium SDF is consistent with the conditional Esscher-
Girsanov transformation.

1. R is no longer the Arrow-Pratt measure of absolute risk
aversion

2. It follows that h = −R and δt = cov(∆Ξ(ct),Ψ(εt)|Ft−1)/σt
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• If we assume mt = rt + λtσt − κP
εt
(σt), then the market price

of risk:

λt =
κP

εt
(σt) + 1

2R2δ2t σ2
t − κP

(εt,Ψ(εt))|Ft−1
(σt,−Rδtσt)

σt
.

• The unit risk premium is decomposed into the sum of a risk
free component and a term which contains the risk preference
parameter

• If the innovations are normally distributed, then λt = Rδtσt -
same result as Esscher transform

• The choice of the inverse Gaussian transform can be ex-
tended to other distortion functions
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• Let G be the cdf of a standardized random variable having a
finite mgf

• Define the following transformation:

Ψ(G)(εt) = G−1(F (εt))

• Ψ(G)(εt) has an Ft-conditionally standard G distributed under
P

• When G = Φ - Esscher-Girsanov transform
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Definition 3 (Generalized Conditional Esscher-Girsanov transform)
Let δ(G) := {δ(G)

t }t∈T be an F -predictable process and let h be
a positive constant. The family of probability measures indexed
by G, Q(G), defined by:

dQ(G)

dP

∣∣∣∣∣
FT

=
T∏

t=1

ehδ
(G)
t σtΨ(G)(εt)

MP
Ψ(G)(εt)|Ft−1

(hδ
(G)
t σt)

is called the generalized conditional Esscher-Girsanov transformed
measure of P with respect to the filtration Ft with parameter h

and penalty process δ
(G)
t .

Note : The parameters h and δ
(G)
t satisfy the martingale equa-

tion:

MP
(εt,Ψ(G)(εt))|Ft−1

(σt, hδ
(G)
t σt) = ert−mtMP

Ψ(G)(εt)|Ft−1
(hδ

(G)
t σt)
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Proposition 6 Let Ξ(G)(ct) be the G-transformation of ct through
its conditional cdf (i.e. Ξ(G)(ct) is standard G-distributed con-
ditional on Ft−1). If there exist three Ft-predictable processes,

α
(G)
t , β

(G)
t , and γ

(G)
t and a sequence of random variables ηt in-

dependent of εt such that ηt ∼ G(0,1) and:

∆Ξ(G)(ct) = α
(G)
t + β

(G)
t Ψ(G)(εt) + γ

(G)
t ηt

then the risk neutral measure constructed based on the standard
equilibrium SDF with marginal utility function satisfying:

u′(ct) = e−RΞ(G)(ct), R > 0

is consistent with the generalized conditional Esscher-Girsanov
transform.

Note: The transformation parameters are h = −R and δ
(G)
t =

β
(G)
t /σt = cov(∆Ξ(G)(ct),Ψ(G)(yt)|Ft−1)/σt
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§5. Numerical results and conclusions

• The return dynamic under P :

yt = r + λσt + σtεt

εt ∼ z(α, β, δ, µ)

σ2
t = a0 + a1σ2

t−1ε2t−1 + γI(εt−1 < 0)σ2
t−1ε2t−1 + b1σ2

t−1

• the return pdf and cumulant generating functions:

fεt(x, α, β, δ, µ) =
1

δB(α, β)
·

(exp[(x − µ)/δ])α

(1 + exp[(x − µ)/δ])α+β

κεt(u) = log
B(α + δu, β − δu)

B(α, β)
+ µu
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• S&P 500 returns data from January 3rd, 1988 to January
6th, 2004

• Estimate the model parameters by MLE

• Use Monte Carlo simulation (50,000 paths) to compute op-
tion prices for MCMM, Esscher transform and Esscher-Girsanov
(h=1) transform

• Call options (STRICKNET INC) sampled every Wednesday
at closing prices from January 7th, 2004 to December 29th,
2004.
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• 1582 European call options, average bid-ask spread is $1.13
and average Call price is $18.36.

• Model performance is tested using root mean squared error
(RMSE):

RMSE =

√√√√√ 1

N

N∑
i=1

(Cmarket
i − Ĉmodel

i )2
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Number of Call option contracts

Mo DTM < 40 40 < DTM < 80 80 < DTM < 180 DTM > 180 All
[0.8,0.9) 8 1 3 2 14
[0.9,0.95) 31 5 3 4 43

[0.95,0.975) 39 6 2 2 49
[0.975,0.99) 88 19 8 9 124
[0.99,1.01) 259 76 37 21 393
[1.01,1.025) 201 38 17 6 262
[1.025,1.05) 232 57 32 4 325
[1.05,1.1) 166 83 50 24 323
[1.1,1.2] 9 7 23 10 49

All 1,033 292 175 82 1,582
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Average Call option prices

Mo DTM < 40 40 < DTM < 80 80 < DTM < 180 DTM > 180 All
[0.8,0.9) 165.00 177.80 173.93 152.65 166.06
[0.9,0.95) 82.65 88.22 106.30 119.53 88.38

[0.95,0.975) 46.54 52.75 67.40 92.85 50.04
[0.975,0.99) 25.08 40.99 61.25 75.06 33.48
[0.99,1.01) 13.47 30.88 47.69 65.37 22.83
[1.01,1.025) 5.59 19.80 38.21 55.50 10.91
[1.025,1.05) 2.72 11.82 28.79 47.33 7.43
[1.05,1.1) 0.67 4.27 14.93 26.54 5.73
[1.1,1.2] 0.13 0.37 4.62 11.05 4.50

All 12.84 20.01 32.31 52.28 18.36
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Panel A. RMSE for z-TGARCH with MCMM

Mo DTM < 40 40 < DTM < 80 80 < DTM < 180 DTM > 180 All
[0.8,0.9) 1.11 1.53 4.83 2.27 2.57
[0.9,0.95) 1.53 2.63 4.44 3.86 2.29

[0.95,0.975) 2.34 4.11 6.27 1.69 2.86
[0.975,0.99) 1.80 4.50 5.03 7.07 3.27
[0.99,1.01) 1.98 3.81 5.48 6.69 3.26
[1.01,1.025) 1.47 3.65 5.29 5.94 2.49
[1.025,1.05) 1.03 2.48 5.13 5.21 2.18
[1.05,1.1) 0.52 1.37 2.92 4.07 1.78
[1.1,1.2] 0.12 0.17 0.83 2.12 1.12

All 1.50 3.00 4.33 5.21 2.57
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Panel B. RMSE for z-TGARCH with Esscher-Girsanov (h=1)
transform

Mo DTM < 40 40 < DTM < 80 80 < DTM < 180 DTM > 180 All
[0.8,0.9) 1.13 2.39 3.93 1.43 2.18
[0.9,0.95) 1.52 2.37 3.94 3.09 2.07

[0.95,0.975) 2.29 3.74 5.37 1.74 2.68
[0.975,0.99) 1.72 4.42 4.64 6.28 3.06
[0.99,1.01) 1.93 3.57 4.80 5.75 2.97
[1.01,1.025) 1.45 3.46 4.73 5.22 2.33
[1.025,1.05) 1.02 2.30 4.53 5.01 1.98
[1.05,1.1) 0.51 1.26 2.55 3.28 1.53
[1.1,1.2] 0.12 0.17 0.60 1.79 0.91

All 1.46 2.83 3.82 4.48 2.35
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Panel C. RMSE for z-TGARCH with Esscher transform

Mo DTM < 40 40 < DTM < 80 80 < DTM < 180 DTM > 180 All
[0.8,0.9) 0.98 1.11 3.97 1.99 2.14
[0.9,0.95) 1.50 2.60 3.79 2.93 2.05

[0.95,0.975) 2.22 3.77 4.70 2.12 2.60
[0.975,0.99) 1.70 4.18 4.09 5.74 2.86
[0.99,1.01) 1.89 3.44 4.49 5.24 2.83
[1.01,1.025) 1.42 3.40 4.38 4.38 2.22
[1.025,1.05) 1.01 2.27 4.37 4.11 1.93
[1.05,1.1) 0.51 1.27 2.33 3.06 1.44
[1.1,1.2] 0.12 0.16 0.61 1.66 0.86

All 1.44 2.76 3.57 4.07 2.24
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• Shows a consistency between Esscher-type transforms and
stochastic discount factors constructed under equilibrium con-
ditions in a general discrete time framework

• For conditional Esscher transform we identified risk neutral
measures based on the standard Euler equation and recursive
utility

• We derive new equilibrium SDFs consistent with the Esscher-
Girsanov principle and its generalization
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∼ Thank you !∼
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