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Barrier-contingent claims

o S; = (Spretrebtr, ... Sy,etrnebn) t € [0,T]

(A1, ..., An — deterministic carrying costs)
o St =Fn=(Fim,...,Fann)

Barrier-contingent claim:

X = f(ST)My = f(Fn)l

where I[{“_ } is the indicator of some barrier event and f is some payoff
function, e.g. (k > 0)
(w1 Fimy + -+ wpFpn, — k) 4,
(maX(wlFlnlv S 7wnFn77n) o k)—i- )
St) = (wiFin + - +wa Fpnn) 4 .




Symmetries

Well-known classic European put-call symmetry (holding for certain models)
E(Fn—Fk)y =E(F —kn), foreveryk > 0.

In view of that, consider

e n="1,---,0n), (1,n1,...,M,) — random price changes
e f (1) — payoff function (forward prices are included in the payoff

functions)

e Discussion: In which case is Eq f () invariant with respect to swaps of

its arguments (expectation w.r.t. martingale measure)?

Main application: Semi-static hedging of certain barrier-contingent claims,
l.e. the replication of these contracts by trading European-style claims at no

more than two times after inception.




Some historic remarks

Bates’ rule:
D.S. Bates. In particular: The skewness premium. Adv. Fut. Options

Res., 1997; see also J. Bowie and P. Carr, Static simplicity, Risk, 1994.

Semi-static hedge of barrier options (based on J. Bowie and P. Carr):
(a call option at the barrier can be converted in certain put options)
P. Carr, K. Ellis, V. Gupta. J. Finance, 1998; P. Carr, R. Lee,

2009.

Lévy markets:

J. Fajardo, E. Mordecki. Symmetry and duality. Quant. Finan., 2006.

Multiasset case:
. M., M. S., 2010.




Duality principle alone does not suffice

For the duality principle, see Eberlein, Papapantoleon & Shiryaev 2008, 2009 and the literature cited therein.

Since Eqn = 1, define
dQ _
iQ

With 77 = n~ 1

Eq(Hn—k)1 =Egn " (Hn—k)y = Eq(H — k7)) 4
= kH "Eg(H*k™! — H7j)4 .

Eq(Hn—k)y = kH "Eq(H?k™" — Hn)y

(resp. equivalent properties) for symmetry based semi-static hedges.




Most important multivariate functions

e Basket option Eq (ug + wimy + - + Urﬂ?n)+
function of (Mo = 1, M1, .- -, M)
e Calls (puts) on maximum/minimum, e.g.

Eq(max(u1n, ..., unmy) — Uo)+

for our symmetry analysis can be replaced by

Eq max(ug, u1n1, ..., UnNy)

e Exchange option Eq (u1771 + T unnn)_|_




Characterisation of distributions

e Breeden & Litzenberger (1978): the prices of all call (resp. put) options

determine the distribution of the single underlying.

e The prices of all basket options determine the multiasset distribution
Carr & Laurence — absolutely continuous case;
the general case is implicit in Henkin & Shananin, Koshevoy & Mosler.




e The same holds for all options on the maximum (weighted)

max(ug, 1M1, - - - , UnMy ) OF MiNimum min(wug, U1n1, - - -, UpMp)-

e The same holds for calls (puts) on maximum/minimum, e.g.

(min(uin1, -« ., Upn) — Ug)+ -

Does not hold for exchange options (w171 + -+ + U, 7).




Information in exchange options

Letn = et and n* = e be integrable random vectors. Then
E((u,n)+ = E((u,n"))+ foralu € R"

if and only if
we(u —1w) = pex (u — 2w)

for all uw € HI, where

H={ueR": Zuk:O},
k=1

and for at least one (and then necessarily for all) w, such that Z w; = 1

and both sides in (1) are finite.

Infinitely divisible case: (1) can be expressed via the Lévy triplet.




Consequences

e Prices of all basket options determine the prices of all European options

(depending on the same assets, with the same maturity).

e Prices of all exchange options determine them for a certain class of

payoff functions.
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Symmetries of multivariate option prices
functions

e Basket option Eq (ug + wim + -+ + unnn)+
(swap ug and ;) —_ 7 is ¢-self-dual (for all (ug, u) € R™*1h

e Option on the maximum Eq max(ug, U1N1, - - - Unn)

(swap 1o and u;) — 7 is 1-self-dual (for all (ug,u) € R™T1)

e Exchange option Eq (u171 + -+ + un7n) .
(swap u; and u; with ug = 0) — 7 is 17-swap-invariant

(forallu € R™)
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Characterisation of self-dual distributions

Integrable 1) is z-self-dual if and only if e.g.

o Ef(n) = E|f(5(n))n;] for all integrable payoffs f, where

X1 ri—1 1 x4 T,
%Z-(x)—(—..., : ,...,—>.

)

e The distribution of 7 under Q coincides with the distribution of s¢;(7)
under Q*, where
dQ’
iQ = i -

e If 17 is absolutely continuous, p, () = z; " *p, (>;(1)) ae.
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e Characterisation in terms of the distribution of £ = log n

1 1
gpg(u—§zei) :gpg(KiTu—Qzei), u € R",

where
Kiaj — (.’171 — Ly ey Li—1 T gy —Xgy i1 — Ly vy Ln — xz’),
(some other equivalent complex shifts are also possible).

Infinitely divisible case: This characterisation can be expressed via the
Lévy triplet.
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PCS In the one asset case

e Classic European put-call symmetry is equivalent to many other

definitions.

e Almost any tail behaviour is possible.

e 1) has a non-negative skewness and for infinitely divisible £ = logn, &

has non-positive skewness.

e For much more, see Carr and Lee 2009 and the literature cited therein.
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Swap-invariance and PCS

Integrable 7} is called 7 7-swap-invariant if

Eq(uim + -+ +untn)4, u€R™,

Is 7; j-invariant (swap u; and u;).
Integrable 7 is 7j-swap-invariant if and only if the (n. — 1)-dimensional

random vector

~ Ui Ni—1 7541 Tin
%j(n):(—..., I ,...,—)

M N 1 1

is self-dual with respect to the 7th component under Qj.
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Characterisation

An integrable random vector 1) = S is i 7-swap-invariant if and only if the

characteristic function of £ satisfies

1 1

pe(u — 15 eij) = pe(miju — 15 €ij)

ueH={ueR": Zuk:()},
k=1

where e;; = €; + e; (many equivalent complex shifts).
Infinitely divisible case: This characterisation can be expressed via the Lévy

triplet.
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Examples

e Black-Scholes case: Each bivariate risk-neutral log-normal distribution is
swap-invariant, no matter what volatilities of the assets and correlation

are.

e The considerable effective degrees of freedom for modelling two assets
based on dependent generalised hyperbolic Lévy processes only slightly

decrease if we ensure that the bivariate swap-invariance property holds.

e Eftc.
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Example: Certain knock-out Margrabe ( n = 2)

Payoff

Xow = (STl — ST2)+I[C>2—§? Vte[0,T]

withec > 1,0 < g—gf < ¢, and (for simplicity) assume
(St1,Se2) = (SoreMest, Spaeres2), (&41,&2). t € [0,T) isa

Brownian motion with drift and non singular covariance matrix

2 2 2

,u:—(— 7) and X = ,
PO109 09
Hedge portfolio:

— long position in the Margrabe option with payoff function

(St1 — ST2)+,

— short position in the weighted Margrabe option with payoff function
(c‘lSTg — CST1>+.
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Verification of the hedge

e If the barrier is not hit, then ¢S;1 > Sio for all ¢; the short position
(c_lSTg — CST1)+ expires worthless and the long position
(ST1 — S12) 4 replicates the option.

e If ¢S4 = 5,9, then the values of these two options at time 7 are

identical.
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Problems with carrying costs

e T .

6An+£n)

€A77:( " )

where \; = r — q; (g;-dividend yield), 2 = 1, ..., n (and for simplicity of
notation 1" = 1).

The problem in self-dual cases

e For applications usually Eei =1,§ =1,...,n.

e Multiplication by e>"i, A; # 0, moves the expectation away from one.
e ¢ self-dual with respect to the ¢th coordinate = Eetitéi = 1.

e [or semi-static hedging, symmetry is rather needed in e ¢ than in eb.
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Quasi-self-duality

n = es is quasi-self-dual (with respect to the zth coordinate) if there exist
A € R™ and o # 0 such that (e*1%)® is integrable and self-dual with

respect the ¢th coordinate.

Univariate power-transform: Carr and Lee (2009), based on earlier work of

Carr and Chou.

For the multivariate case

Ef(St)

a E{f(gz (57155 S3-1) S0is ST(i41)5 -+ ST”)) (

etc.

A similar extension to quasi-swap-invariance is known (useful for non-equal

carrying costs).
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Finding « in infinitely divisible cases

To ensure that Ei7); = 1 the value @ must satisfy

ajior = Qi — 20 + 2/ (e — 1 — me2 ™ Myuy<1)dv (),

n

where [[z[|* = 5 (|2 + [| Kz |]?).
Usually not easy to solve (even for n = 1) and solution(s) may not exist.

There are some friendly special cases.

22



References

|. Molchanov and M. Schmutz, Multivariate extensions of put-call
symmetry , 2010
SIAM J. Financial Math.

See also

e P. Carr and R. Lee, Put-call symmetry: Extensions and applications
2009 (preprint 2007)

Math. Finance

e Self-duality and geometry: I. Molchanov and M. Schmutz , Geometric

extension of put-call symmetry in the multiasset setting , 2008
ArXiv math.PR/0806.4506

23



e |. Molchanov and M. Schmutz , Exchangeability type properties of

asset prices , 2010
Submitted.

e M. Schmutz , Semi-static hedging for certain Margrabe type options
with barriers , 2008
ArXiv math.PR/0810.5146
Extended version: to appear 2010

Quant. Finance

24



