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� How many sources of dynamic risk can we identify in index
options?
What is the empirical evidence?

� How can we conveniently model the multiple risk sources in
an affine framework?
And thus account for the empirical evidence?

� How can we improve on existing benchmark models?
And put the model to an empirical test?
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DPS-type affine models
Duffie, Pan, Singleton (DPS, 2000): Transform analysis and asset pricing for
affine jump-diffusions
Bates (2000): Post-’87 Crash Fears in the S&P 500 Futures Option Market
Christoffersen et. al (2009): The Shape and Term Structure of the Index Option
Smirk: Why Multifactor Stochastic Volatility Models Work so Well

Affine models with matrix jump diffusions
Leippold, Trojani (wp, 2008): Asset pricing with Matrix Jump Diffusions
Cuchiero, Filipovic, Mayerhofer, Teichmann (2010): Finite Processes on
Positive Semidefinite Matrices
Gourieroux, Sufana (wp 2004): Derivative Pricing with Multivariate Stochastic
Volatility: Application to Credit Risk
da Fonseca, Grasselli, Tebaldi (2008): A Multifactor Volatility Heston Model

Alternative (affine) multifactor models
Muhle-Karb, Pfaffel, Stelzer (wp, 2010): Option pricing in multivariate
stochastic volatility models of OU type
Carr, Wu (wp, 2009): Leverage Effect, Volatility Feedback, and Self-Exciting
Market Disruptions: Disentangling the Multi-dimensional Variations in S&P500
Index Options
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Sample calls only
Time frame 1996-Sept/2008
Sampling interval daily
Trading days 3205
Total number of observations 546’971
Average time to maturity 145 days [10d ∼ 1yr]
Average moneyness (S/K) 1.05
Data processing Bakshi(1997), no cuts
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Sample calls only
Time frame 1996-Sept/2008
Sampling interval daily
Trading days 3205
Total number of observations 546’971
Average time to maturity 145 days [10d ∼ 1yr]
Average moneyness (S/K) 1.05
Data processing Bakshi(1997), no cuts

Analytical framework: economically significant factors

level Vt IV (ATM, τ = 30d)
skew St [IV (∆ = 0.4)− IV (∆ = 0.6)] · 1

(0.4−0.6) τ = 30d

term struct. Mt [IV (τ = 90d)− IV (τ = 30d)] · 360
(90−30) ATM
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Skewness and term structure unconditionally highly correlated
to level → level masks more nuanced effects.
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Considerable variation in skewness and term structure that is not
spanned by the volatility level.



Empirical evidence – unspanning (2)

Introduction

Empirical evidence

Data

Level effects

⊲ Unspanning

Factors

Model

Performance

Stochastic
Coefficients

Conclusion

P. Gruber: Three make a dynamic smile 9 / 39

Standard two-factor affine models cannot capture both unspanned
skewness and term structure components
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Principal component analysis (% of variance explained)

l PC 1 PC 2 PC 3 PC 4
Unconditional 2 96.8 1.9 0.9 0.1 T = 3206
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Principal component analysis (% of variance explained)

l PC 1 PC 2 PC 3 PC 4
Unconditional 2 96.8 1.9 0.9 0.1 T = 3206

0.08 < Vt ≤ 0.13 3 84.5 6.9 5.6 0.8 T = 641

0.13 < Vt ≤ 0.17 3 84.8 7.1 5.9 0.7 T = 641

0.17 < Vt ≤ 0.2 3 75.4 12.3 8.4 1.3 T = 641

0.20 < Vt ≤ 0.23 3 74.7 12.0 8.6 1.77 T = 641

0.23 < Vt ≤ 0.54 3 87.2 8.7 2.6 0.6 T = 641

l = significant components according to mean eigenvalue criterion.
(N = 56, threshold= 1

56=1.79%)
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Bates-like independent factors – SV (J)3,0

dSt

St
= (r − q − λtk)dt+

√
v1tdz1t +

√
v2tdz2t +

√
v3tdz3t + kdNt (1)

dvit = (αi − βivit) dt+ σi
√
vitdwit i = 1, 2, 3 (2)

Affine Matrix Jump Diffusion – SV (J)3,1

dSt

St

= (r − q − λtk)dt+ tr(
√

XtdZt) + kdNt (3)

dXt = [ΩΩ′ +MXt +XtM
′]dt+

√
XtdBtQ+Q′dB′

t

√
Xt (4)

– Xt is a (2× 2) symmetric, pos.def. matrix-valued process
– Interactions for M,Q not diagonal
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stoch. volatility Vt := var(dSt
St

) = tr[Xt] = X11 +X22

stoch. leverage effect cov(dSt
St

, dVt) = 2tr[R′QXt]

stoch. persistence 1
dt
E[dVt] = tr[ΩΩ′] + 2tr[MXt]

Natural mapping to observable, economically important quantities
(Karoui, Durrleman wp 2007)

level
√
Vt =

√
tr[Xt]

skew St = 1
2
tr[RQXt]

tr[Xt]3/2

term struct Mt ≈ 1
2

tr[MXt]

tr[Xt]1/2
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Aim: Separate volatility effect from unspanned skewness/term structure

(
X11 X12

X12 X22

)
=

(
cos(α) sin(α)
− sin(α) cos(α)

)(
V1,t 0
0 V2,t

)(
cos(α) − sin(α)
sin(α) cos(α)

)

(X11, X12, X22) −→ (Vt, ξt, αt) Vt = tr[Xt] = V1,t+V2,t; ξ =
V1,t

V1,t + V2,t

Bounded: ξ[0, 1];α[0, π]

Decompose expressions of the type tr[AXt]:

Tr[AXt] =
Vt

2

[

Tr(A)+(2ξt − 1)
︸ ︷︷ ︸

scale

(

cos(2αt)(A11 −A22) + sin(2αt)(A12 + A21)
)

︸ ︷︷ ︸

direction

]

Application: Illustrate unspanned skewness/term structure
components via an approximation of the short term volatility surface

St ∝ [RQXt]

Mt ∝ [MXt]
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Illustration of state decomposition (2)
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Option pricing with (affine) Laplace transform
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Ψ(τ ; γ) := Et [exp (γYT )] = exp
(
γYt + tr

[
A(τ )Xt

]
+B(τ )

)
(5)

where A(τ ) = C22(τ )
−1C21(τ ) with the 2× 2 matrices Cij(τ ):

(
C11(τ ) C12(τ )
C21(τ ) C22(τ )

)
= exp

[
τ

(
M + γQ′R −2Q′Q

C0(γ) −(M ′ + γR′Q)

)]
(6)

C0(γ) =
γ(γ − 1)

2
I2 + Λ

[
(1 + k)γ exp

(
γ(γ − 1)

δ2

2

)
− 1− γk

]
(7)

B(τ ) =

{
r − q + λ0

[
(1 + k)γ exp

(
γ(γ − 1)

δ2

2

)
− 1− γk

]}
τ

−β

2
tr[logC22(τ )− τ (M ′ +R′Q)] (8)

See Leippold/Trojani wp 2008
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� Sub-sample: 59 monthly observations (2000-2004)
Challenging, avoid over-fitting

� Cross-section only; risk-neutral pricing

� Nested optimum

� Max. likelihood like Bates(2000), correct for heteroskedasticity

Parameter estimate

θ̂ = argmax
θ

− 1

2

∑

t

(
ln |Ωt|+ e

′
t Ω

−1
t et

)
(9)

et(θ,X
∗
t (θ))=relative pricing error, Ωt = conditional cov. matrix of ei,t

Implied state by NLS

X∗
t (θ) = arg min

{Xt}

(
Ĉi(θ,Xt)− Ci

)2

(10)
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In sample (2000-2004, monthly)

SV2,0 SV3,0 SV3,1 SV J2,0 SV J3,1
State variables 2 3 3 2 3
rms$E 1.180 1.127 1.048 1.115 0.913
(stdv) (0.370) (0.348) (0.285) (0.446) (0.324)
Within bid-ask 0.603 0.617 0.640 0.635 0.633

Full sample (1996-09/2008)

SV2,0 SV3,0 SV3,1 SV J2,0 SV J3,1
State variables 2 3 3 2 3
rms$E 1.937 2.057 1.570 1.862 1.457
(stdv) (1.101) (1.727) (0.808) (1.129) (0.809)
rmsIV E 2.69 2.61 2.60 3.18 2.36
Within bid-ask 0.437 0.461 0.540 0.452 0.527
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Improvement =
ǫSV 2,0 − ǫSV 3,1

ǫSV 2,0



Improvements by volatility level
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Improvement =
ǫSV (J)2,0 − ǫSV (J)3,1

ǫSV (J)2,0
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Improvement =
ǫSV (J)2,0 − ǫSV (J)3,1

ǫSV (J)2,0
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l PC 1 PC 2 PC 3 PC 4
Unconditional 2 97.0 1.9 0.8 0.1 T = 3206
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l PC 1 PC 2 PC 3 PC 4
Unconditional 2 97.0 1.9 0.8 0.1 T = 3206
−0.44 < α/π ≤ −0.15 2 96.0 2.1 1.0 0.3 T = 641
−0.15 < α/π ≤ −0.09 1 97.1 1.3 1.0 0.2 T = 641
−0.09 < α/π ≤ −0.03 1 97.1 1.7 0.7 0.2 T = 641
−0.03 < α/π ≤ 0.02 1 97.0 1.7 0.9 0.1 T = 641
0.02 < α/π ≤ 0.15 2 96.2 1.9 1.3 0.2 T = 641

l = significant components according to mean eigenvalue criterion.
(N = 56, threshold= 1

56=1.79%)
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Eigenvectors/alpha (SV3,1)
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Eigenvectors/alpha (SV J3,1)
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Stochastic Coefficients
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Interpret eigenvalues of Xt as two volatility factors:

dV1t =

(

β(Q̃′

tQ̃t)
11 + 2(M̃t)

11V1t +
V1t(Q̃

′

tQ̃t)
22 + V2t(Q̃

′

tQ̃t)
11

V1t − V2t

)

dt+ 2

√

V1t(Q̃′

tQ̃t)11dν1t

dV2t =

(

β(Q̃′

tQ̃t)
22 + 2(M̃t)

22V2t −
V1t(Q̃

′

tQ̃t)
22 + V2t(Q̃

′

tQ̃t)
11

V1t − V2t

)

dt+ 2

√

V2t(Q̃′

tQ̃t)22dν2t

(ν1, ν2)
′ standard Brownian motion in R

2

M̃t = O′
tMOt and Q̃t = O′

tQOt.

Ot =

(
cos(αt) − sin(αt)
sin(αt) cos(αt)

)



Continuous regime shift
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Factors V1t and V2t cannot cross (Wishart property),
but mean-reversion and vol-of vol can
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� Identified interacting + unspanned components in the volatility
surface of S&P 500 index options.

� Matrix jump diffusion is a convenient framework for modeling
interacting + unspanned factors.

� Estimated full matrix jump-diffusion model and nested models

� Find:
– Three factors are indeed needed
– Better in and out-of sample fit
– Third factor should be interaction factor (α)
– Largest improvements where 2 factor models are weak and α 6= 0

� Appropriate conditioning provides evidence for a conditional
two-factor structure −→ stochastic coefficient model.

Future

� Use insights for more parsimonious models
� Apply to other fields of finance + economics
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level=0.17
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level=0.17
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level=0.17
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� Nested optimization: very heavy computation

� Major load: calculating the Laplace transform
(not performing the Fourier inversion)

� Matrix logarithm – use matrix rotation count algorithm

Improve speed

� Optimized MATLAB code on a MATLAB cluster (32 cores)

� Genetic optimization permits parallelizing parameter estimation

� Cos-FFT (250 instead of 4096 evaluations of Laplace transform)

� Separate evaluation of state-dependent and maturity-dependent parts
of Laplace transform

� Select a sample with few distinct maturities
(monthly data, all Wednesdays)

� Estimation still takes 1 week
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� Jump size like Bates: iid jumps

ln(1 + k) ∼ N(ln(1 + k̄)− δ2

2
, δ2)

� Jump intensity: extend Bates to matrix case

λt = λ0 + Λ11X11 + Λ12X12 + Λ22X22 = λ0 + tr[ΛXt]

� Identification → Λ upper triangular

� Ensure positive jump intensity:

Λ11 > 0

Λ22 > 0

|Λ12| < 2
√
Λ11Λ22

� Unspanned jump intensity component
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