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Game Options: Safety for the Short Side

I The current financial crisis has highlighted the importance of
adequately hedging risk and limiting downside losses.

I Hedging:
I Modeling fluctuations in value under changes in market factors

(X , σ, etc) and constructing offsetting positions in tradable
assets.

I Another way is to build extra features, such as cancellation,
into the derivative specifications.



Game Option

I Consider an American-style derivative with a cancellation
feature given to the writer of the contract.

I At any point during the life of the contract, the writer can
force the holder to take the current payoff plus a small
additional amount as compensation for terminating the
contract.

I We refer to this as a Game option.
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Game Option

I Contract: Seller A Buyer B

I B can exercise at any time t.

A
Yt−→ B

I A can cancel at any time t.

A
Yt+δt−−−→ B

I Two optimal stopping problems: Optimal Exercise Time and
Optimal Cancellation Time.

I What is the fair price V that B should pay to A for the
contract? What are the optimal exercise and cancellation
times for this game option?



Valuation: Complete Markets

I In this setting, valuation corresponds to solving a zero-sum
optimal stopping game between two players.

I For cancellation policy τ and exercise policy σ the payoff of
the claim is

R(σ, τ) := (Yτ + δτ )1{τ<σ} + Yσ1{σ≤τ}

I Kifer (2000) shows the fair price is

Vt = infτ∈St,T supσ∈St,T E[e−r(σ∧τ−t)R(σ, τ)|Ft ]

= supσ∈St,T infτ∈St,T E[e−r(σ∧τ−t)R(σ, τ)|Ft ]

I Basic Price Bound: Yt ≤ Vt ≤ Yt + δt .
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Optimal Policies

I What are the ‘optimal’ σ, τ stopping times?

i.e. What policies achieve the infimum and supremum?

σ∗t := inf {s ≥ t : Vs = Ys}
τ∗t := inf {s ≥ t : Vs = Ys + δs}

I These stopping times are also ‘optimal’ exercise dates.

I The holder waits until the value drops to the exercise value.
I The writer waits until the value reaches the cancellation value.



Perpetual Cancellable Call Option

I Let the risky asset X satisfy the following risk-neutralized
evolution

dXt = (r − d)Xt dt + σXt dWt

I Suppose T =∞ and consider the following:

Yt = (Xt − K )+; δt = δ > 0

I We call this a Perpetual Cancellable Call Option or simply a
δ-penalty call option.



Valuation of δ-penalty Put Option

Completed by Kyprianou (2004):

I Value function identified explicitly.

I Optimal Stopping times (for δ small):

σ∗ := inf {t ≥ 0 : Xt = k∗}
τ∗ := inf {t ≥ 0 : Xt = K}

Does the valuation of a Call Option with dividend d > 0 follow
symmetrically to this result?



Optimal Policies for Perpetual American Call?
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Figure: Possible Exercise and Cancellation Barriers



Valuation: r ≤ d

Conjecture: Value function satisfies for x ∈ (0,K ),

LV − rV = 0

V (K ) = δ, lim
x↓0

V (x) = 0

and for x ∈ (K , k∗),

LV − rV = 0

V (K ) = δ,V (k∗) = (k∗ − K )+,Vx(k∗) = 1,

where

L := (r − d)x
d

dx
+

1

2
σ2x2

d2

dx2



Valuation: r ≤ d

Proof: Let v(x) be the proposed value function.

v(x) ≤ inf
τ∈S0,∞

Ex [e−r(τ∧σk∗ )v(Xτ∧σk∗ )]

≤ inf
τ∈S0,∞

Ex [e−r(τ∧σk∗ )((Xσk∗ − K )+1{σk∗≤τ}

+ ((Xτ − K )+ + δ)1{τ<σk∗})]

≤ sup
σ∈S0,∞

inf
τ∈S0,∞

Ex [e−r(τ∧σ)((Xσ − K )+1{σ≤τ}

+ ((Xτ − K )+ + δ)1{τ<σ})]

≤ sup
σ∈S0,∞

Ex [e−r(τK∧σ)((Xσ − K )+1{σ≤τK}

+ ((XτK − K )+ + δ)1{τK<σ})]

≤ sup
σ∈S0,∞

Ex [e−r(τK∧σ)v(XτK∧σ)]

≤ v(x)



Value function: r ≤ d

Conclusion:

V (x) =


x − K if x ∈ [k∗,∞)

g(x) if x ∈ (K , k∗)
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Value function r ≤ d
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Figure: Convex value function.



Valuation: r > d
Conjecture: Why not same as before?

I v(x) violates basic inequality

(x − K )+ ≤ v(x) ≤ (x − K )+ + δ
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Figure: v(x) (dark blue) violates upper bound.
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Valuation: r > d

New Conjecture: Value function satisfies

for x ∈ (0,K ),

LV − rV = 0

V (K ) = δ, lim
x↓0

V (x) = 0

and for x ∈ (h∗, k∗),

LV − rV = 0,

V (h∗) = (h∗ − K )+ + δ,Vx(h∗) = 1,

V (k∗) = (k∗ − K )+,Vx(k∗) = 1



Valuation: r > d

Proof:

v(x) ≥ sup
σ∈S0,∞

Ex [e−r(σ∧τ[K ,h∗]){((Xτ[K ,h∗] − K )+ + δ)1{τ[K ,h∗]<σ}

+ (Xσ − K )+1{σ≤τ[K ,h∗]}}]

≥ inf
τ∈S0,∞

sup
σ∈S0,∞

Ex [e−r(σ∧τ){((Xτ − K )+ + δ)1{τ<σ}

+ (Xσ − K )+1{σ≤τ}}]

≥ sup
σ∈S0,∞

inf
τ∈S0,∞

Ex [e−r(σ∧τ){((Xτ − K )+ + δ)1{τ<σ}

+ (Xσ − K )+1{σ≤τ}}]
≥ v(x)

where τ[K ,k∗] := inf{t ≥ 0 : K ≤ Xt ≤ h∗].



Value function: r > d

Conclusion:

V (x) =



x − K if x ∈ [k∗,∞)

(k∗ − K )+Ex [e−rσk∗1{σk∗≤τ[K ,h∗]}]

+((h∗ − K )+ + δ)Ex [e−rτ[K ,h∗]1{τ[K ,h∗]<σk∗}] if x ∈ (h∗, k∗)

(x − K ) + δ if x ∈ [K , h∗]

δ Ex [e−rτ[K ,h∗] ] if x ∈ (0,K )

where

τ[K ,k∗] := inf{t ≥ 0 : K ≤ Xt ≤ h∗]

σk∗ := inf{t ≥ 0 : Xt ≥ k∗}



Value function r > d
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Figure: Non-convex value function.



Some Implications

I Game Options with convex underlying payoffs are not
necessarily convex.

I Subsequently, game option prices are not always increasing in
the volatility parameter σ.

i.e., Vega can be negative,

∂V (x)

∂σ
< 0, for some x values.



Thank You!

Thank you very much for your attention!
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