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In-arrear interest rate products

Convexity adjustment (correction) occurs when the interest
rate pays out at the wrong time and/or in the wrong
currency..

In-arrear swaps and in-arrear caps and floors differ from vanilla
products in the floating leg

B in the vanilla products, the payoff at each time ti is based on
the LIBOR rate observed at the date before, i.e. at ti−1..

B in the in-arrear products, the payoff at each time ti is based on
the LIBOR rate at ti ..

Compared to the vanilla products, there is mismatch in cash
flow timing
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Valuation of in-arrear interest rate products

B Mostly when no further assumptions concerning the term
structure of the interest rate are made, it is impossible to
price these products

B Even when a specific term structure model is assumed,
closed-form solutions can only be achieved in very few cases
(e.g. LIBOR market model)

B Approximation methods are frequently used

♦ the price of an in-arrear swap is usually approximated by the
sum of a forward-starting vanilla swap and a convexity
adjustment term

♦ Similarly, the price of an in-arrear cap/floor can be decomposed
into a vanilla cap/floor plus a convexity adjustment
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Notations

Consider an in-arrear payer swap

B Assume that the variable interest payments (floating leg) are
received at a set of equidistant time points in

T = {0 = t0 < t1 < t2 < · · · < tN := T}

with α := ti+1 − ti .
B The fixed leg pays fixed interest rate payments at a set of

equidistant time points in

Θ = {0 = τ0 < τ1 < · · · τn := T}

B Let β := τj+1 − τj . Assume that β is a multiple of α, i.e.
β = m · α, m ∈ IIN. It implies that τn = tn·m = tN = T .
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Payoff structure of an in-arrear payer swap

t0
α︷ ︸︸ ︷ t1

α︷ ︸︸ ︷ t2
α︷ ︸︸ ︷ t3

α︷ ︸︸ ︷ t4 = τ1 tN−1

α︷ ︸︸ ︷ tN

rL(t1) rL(t2) rL(t3) rL(t4) rL(tN−1) rL(tN)

? ?

? ?

?

?
α · rL(t1) · V α · rL(t3) · V

α · rL(t2) · V α · rL(t4) · V

α · rL(tN−1) · V

α · rL(tN) · V

−β · L · V −β · L · V

Payoff structure of an in-arrear payer swap with m = 4 and
rL(ti , ti , α) := rL(ti )
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Accumulation of the variable interest rate from ti to ti+1

-
ti ti+1

α · rL(ti ) · V α · rL(ti ) · V · (1 + α · rL(ti ))
-

Accumulation

(1 + α · rL(ti ))

= α · rL(ti ) · V︸ ︷︷ ︸ + α
2 · r2

L (ti ) · V︸ ︷︷ ︸
variable interest
payment of a
vanilla swap

additional interest
payments
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Floating leg

The initial arbitrage-free value of the floating leg of the
in-arrear swaps can be decomposed into two parts:

a) the initial arbitrage-free value of the floating leg of a
forward-starting vanilla swap which starts to receive
α · V · rL(t1) at time t2 and ends with the last payment
α · V · rL(tN) at time tN+1 := tN + α,

b) and the initial arbitrage-free value of a sequence of additional
variable interest payments:

α2 · r2
L (ti ) · V , i = 2, . . . ,N + 1.
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Arbitrage value: part a) of floating leg

The payoff of the forward-starting vanilla swap can be
duplicated by the following simple strategy:

B At time 0 buy V zero coupon bonds with maturity t1.
B At time t1, invest V as a rollover deposit with the time-varying

LIBOR rate.
B At the end ti+1 of each period [ti , ti+1], i = 1, · · · ,N, keep the

interest rate payment, and invest V further for one more
period.

B Repeat this process until tN+1 := tN + α. The terminal
strategy value is V + α · V · rL(tN).

B At time 0 sell V zero coupon bonds with maturity tN+1.

The initial arbitrage-free value of part a) of the floating leg
corresponds to the value of the entire strategy, i.e.
VB(t0, t1)− VB(t0, tN+1)
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Additional variable interest rate payments

Impossible to determine the arbitrage-free values of this part
without further assumptions about the term structure of the
interest rate

One trick is to make the following approximation

rL(ti , ti , α) := rL(ti ) ≈ rL(t0, ti , α)

B The technique of replacing the random spot LIBOR rate by the
forward LIBOR rate at time zero is the so-called convexity
adjustments approach
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Convexity adjustment for the initial arbitrage-free value

The model-independent approximation for the initial
arbitrage-free value of the in-arrear payer swap:

payer-swapar [rL, L,V ,T ,Θ]

≈V ·

B(t0, t1)− B(t0, tN+1)−

 n∑
j=1

β · L · B(τ0, τj)


+ V ·

N∑
i=1

( B(t0, ti )− B(t0, ti+1)

B(t0, ti+1)︸ ︷︷ ︸
αrL(t0,ti ,α)

)2
.
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Assumption

Assumption:

Assume an arbitrage-free financial market with a set of
equivalent martingale measures IP. It is furthermore as-
sumed that there exists at least an equivalent martingale
measure P∗ ∈ IP such that P∗ can be changed to a forward
measure Qτ+α for each compounding period α and each
time τ through the change-of-measure technique and un-
der Qτ+α the forward LIBOR rate process {rL(t, τ, α)}t≤τ

is a martingale. It holds particularly

rL(t0, τ, α) = EQτ+α [rL(t, τ, α)].
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Proposition

In any arbitrage-free interest rate model with the above assumption, the
convexity adjustments of an in-arrear payer swap is a lower bound for the
arbitrage-free price of an in-arrear payer swap:

payer-swapar [rL, L, V , T , Θ] ≥A(L)

where T = {0 = t0 < t1 < t2 < · · · < tN := T} with α := ti+1 − ti and
Θ = {0 = τ0 < τ1 < · · · τn : T} with β = τj+1 − τj = m · α. The pricing bound
A(L) owns the form of

A(L) =V · B(t0, t1) − V · B(t0, tN+1) +
N∑

i=1

V · B(t0, ti+1)

(
B(t0, ti )

B(t0, ti+1)
− 1

)2

−
n∑

j=1

β · L · V · B(t0, tj·m).

In particular, L∗ with A(L∗) = 0 is a lower bound for the swap yield of an

in-arrear payer swap.
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Proof Sketch

What needs to be approximated in the in-arrear swap is the sequence of
additional variable interest rate payments α2 · r2

L (tj , tj , α)V , j = 1, · · · ,N:

EP∗

[
e−

∫ tj+1
0 ruduα2r2

L (tj , tj , α)V
∣∣∣Ft0

]
=B(t0, tj+1)α

2VEQtj+1

[
r2
L (tj , tj , α)|Ft0

]
=B(t0, tj+1)α

2V
[(

EQtj+1 [rL(tj , tj , α)|Ft0 ]
)2

+ VarQtj+1 [rL(tj , tj , α)|Ft0 ]
]

≥B(t0, tj+1)α
2V

(
EQtj+1 [rL(tj , tj , α)|Ft0 ]

)2

=B(t0, tj+1)α
2Vr2

L (t0, tj , α)

=B(t0, tj+1)V

(
B(t0, tj)

B(t0, tj+1)
− 1

)2

.
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Numbers

Normal term structure of the interest rate, particularly that the log-rate
of return of the zero coupon bonds are linearly increasing in time to
maturity:

y(t0, ti ) = 2.5% + 0.2% · (ti − t0).

Consequently, zero coupon bonds have the value of

B(t0, ti ) = exp{−y(t0, ti )(ti − t0)}.

Other parameters are chosen as follows:

α =
1

4
, β =

1

2
, L = 3.5%, V = 1

We adopt the following function (c.f. Brigo and Mercurio (2001))

γ(t, ti ) =[g + a(ti − t)] exp{−b(ti − t)} + c

with a =0.19085664; b = 0.97462314; c = 0.08089168; g = 0.01344948
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Numerical results

Maturity In-Arrear Payer Swap
T in LIBOR model Convexity correction
years Arb-free price imp. L∗ Arb-free price imp. L∗

1 -0.66764 2.81889 -0.66787 2.81866
2 -0.92879 3.01913 -0.92989 3.01856
3 -0.80648 3.21712 -0.80920 3.21616
4 -0.32717 3.41243 -0.33229 3.41106
5 0.47992 3.60467 0.47161 3.60286
6 1.58337 3.79346 1.57105 3.79117
7 2.95022 3.97841 2.93301 3.97562
8 4.54652 4.15918 4.52352 4.15584
9 6.33794 4.33540 6.30820 4.33148
10 8.29032 4.50675 8.25288 4.50221

Arbitrage-free prices for (in-arrear) payer swaps and implied swap yield based on exact pricing formulae and the

corresponding convexity adjustments (pricing bounds).
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Notations

As the reference payment time, we fix again an equidistant sequence
of time points T = {0 = t0 < t1 < t2 < · · · < tN := T} with
α := ti+1 − ti , and L is now the cap/floor rate.

In a vanilla cap, the contract holder receives α · V · [rL(ti )− L]+ at
ti+1, i = 1, · · · ,N. Hereby we have used [x ]+ := max{x , 0}.

The contract holder of an in-arrear cap receives

α · V · [rL(ti )− L]+

already at time ti , i = 1, · · ·N.
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Payoff structure of an in-arrear cap

t0
α︷ ︸︸ ︷ t1

α︷ ︸︸ ︷ t2
α︷ ︸︸ ︷ t3

α︷ ︸︸ ︷ t4 tN−1

α︷ ︸︸ ︷ tN

rL(t1) rL(t2) rL(t3) rL(t4) rL(tN−1) rL(tN)

? ?

? ?

?

?
α · V · [rL(t1) − L]+ α · V · [rL(t3) − L]+

α · V · [rL(t2) − L]+ α · V · [rL(t4) − L]+

α · V · [rL(tN−1) − L]+

α · V · [rL(tN) − L]+

An Chen In Arrear Term Structure Products 17/25



Introduction
In-arrear swaps

In-arrear caps and floors
Conclusion

Contract payoff
Valuation
Theoretical justification for the approximations

Accumulation of the payment from ti to ti+1

-
ti ti+1

α · V · [rL(ti ) − L]+ (1 + α · rL(ti )) · α · V · [rL(ti ) − L]+
-

Accumulation

(1 + α · rL(ti ))
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Approximation

Apparently, without further assumptions about the term structure of
the interest rate, it is impossible to calculate the initial
arbitrage-free value of the in-arrear cap.

Use the initial forward LIBOR rate rL(t0, ti , α) to approximate rL(ti ):

(1 + α · rL(ti )) ≈ (1 + α · rL(t0, ti , α)) =
B(t0, ti )

B(t0, ti+1)
.

Approximation for the initial market value of the in-arrear cap:

Capar [rL, L,V ,T , t0] ≈
N∑

i=1

B(t0, ti )

B(t0, ti+1)
· Caplet(rL, L,V , t0, ti+1)

where Caplet(rL, L,V , t0, ti+1) gives the initial arbitrage-free value
of α · V · [rL(ti )− L]+ which becomes due at time ti+1.
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Proposition

In an arbitrage-free interest rate model with the above mentioned
assumption, there exists a model-independent lower bound for the
arbitrage-free price of an in-arrear cap, i.e.

Capar [rL, L,V ,T , t0] ≥
N∑

i=1

B(t0, ti )

B(t0, ti+1)
· Caplet(rL, L,V , t0, ti+1)

where T = {0 = t0 < t1 < t2 < · · · < tN := T} with α := ti+1 − ti and
Caplet is defined by

Caplet(rL, L,V , t0, ti+1) := B(t0, ti+1) EQti+1 [α · V · [rL(ti )− L]+|Ft0 ].
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Proof sketch

Capar [rL, L, V , T , t0]

=
N∑

i=1

EP∗

[
e−

∫ ti+1
0 rudu(1 + α · rL(ti )) · α · V · [rL(ti ) − L]+

∣∣∣Ft0

]

=
N∑

i=1

B(t0, ti+1) · EQti+1

[
(1 + α · rL(ti )) · α · V · [rL(ti ) − L]+

∣∣∣Ft0

]
=

N∑
i=1

B(t0, ti+1) · EQti+1

[
α · V · [rL(ti ) − L]+

∣∣∣Ft0

]
+

N∑
i=1

B(t0, ti+1) · EQti+1

[
α2 · V · rL(ti )) · [rL(ti ) − L]+

∣∣∣Ft0

]
=

N∑
i=1

Caplet(rL, L, V , t0, ti+1) +
N∑

i=1

B(t0, ti+1) · EQti+1

[
α2 · V · rL(ti ) · [rL(ti ) − L]+

∣∣∣Ft0

]
.
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...Proof sketch

The second term on the right-hand side can be rewritten as

N∑
i=1

B(t0, ti+1)EQti+1

[
α2 · V · rL(ti ) · [rL(ti ) − L]+

∣∣∣Ft0

]
=α2 · V ·

N∑
i=1

B(t0, ti+1)EQti+1

[
[rL(ti ) − L]+

∣∣∣Ft0

]
· E

Q
tj+1 [rL(ti )|Ft0 ]

+ α2 · V ·
N∑

i=1

B(t0, ti+1)CovQti+1

[
rL(ti ), [rL(ti ) − L]+

∣∣∣Ft0

]
≥α2 · V ·

N∑
i=1

B(t0, ti+1)EQti+1

[
[rL(ti ) − L]+

∣∣∣Ft0

]
· E

Q
tj+1 [rL(ti )|Ft0 ]

=
N∑

i=1

α · rL(t0, ti , α) · B(t0, ti+1) · α · VEQti+1

[
[rL(ti ) − L]+

∣∣∣Ft0

]

An Chen In Arrear Term Structure Products 22/25



Introduction
In-arrear swaps

In-arrear caps and floors
Conclusion

Contract payoff
Valuation
Theoretical justification for the approximations

Numerical results

Maturity Cap contract Floor contract
T in vanilla in-arrear convexity vanilla in-arrear convexity
years adjustment adjustment

1 0.00452 0.00456 0.00455 0.77786 0.78289 0.78309
2 0.10260 0.10370 0.10341 1.24444 1.25255 1.25329
3 0.40505 0.40976 0.40854 1.53388 1.54391 1.54526
4 0.95353 0.96536 0.96241 1.71438 1.72562 1.72752
5 1.75991 1.78306 1.77752 1.82707 1.83908 1.84142
6 2.81902 2.85820 2.84917 1.89815 1.91065 1.91335
7 4.11421 4.17446 4.16100 1.94385 1.95666 1.95963
8 5.62150 5.70801 5.68917 1.97392 1.98695 1.99012
9 7.31264 7.43066 7.40545 1.99423 2.00739 2.01072
10 9.15733 9.31198 9.27944 2.00828 2.02155 2.02500

Arbitrage-free prices for (in-arrear) caps and floors based on exact pricing formulae and the corresponding convexity

adjustments (pricing bounds).
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Comparison of the convexity adjustment and the exact
value
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Conclusion

B In the present paper, we provide a strong theoretical argument
to support the convexity adjustments approach, a rule of
thumb used by practitioners to value in-arrear products.

B Our results exclusively depend on the no-arbitrage condition
which ensures the existence of certain forward risk adjustment
measures. They are model-independent and in effect give
pricing bounds for in-arrear term structure products.
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