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Drawback of Black Scholes Model

@ Smile curve

Implied volatilty

Qut of the Atthe
money mone;

Rubinstein (1985)
Jackwerth and Rubinstein (1996)
In B.S. Model, Implied Volatility curve is flat.

We need to use the implied volatility which explicitly depends
on the option strike and maturity.
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Local Volatility Model

Local Volatility Model
@ One needs volatility to depend on underlying
@ Local Volatility Models

— =S¢, t)dt + oS¢, t)dW,

@ The dynamics of Implied Volatility in Local Volatility model.

Cimp|

This is opposite to real market.(Hagan, 2002)
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CEV Model

o CEV (constant elasticity of variance) diffusion model

@ X; stock price s.t.

14
dX¢ = pXedt + o X7 dW,

@ Introduced by Cox and Ross(1976)

e Studied by Beckers (1980), Schroder(1989), Boyle and
Tian(1999), Davydov and Linetsky(2001), Delbaen and
Schirakawa(2002), Heath and Platen(2002), Carr and
Linetsky(2006) and etc.

@ Analytic tractability
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CEV Model cont.

@ When 6 = 2 the model is Black-Scholes case.

@ When 6 < 2 volatility falls as stock price rises.
= realistic, can generate a fatter left tail.

@ When 6 > 2 volatility rise as stock price rises.
= (futures option)
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CEV Model cont.

Theorem (Lipton ,2001)

The call option price Ccey for X; = x is given by

o
C(_‘Ev(t,X) = e_r(T_t)X/ (
K
+ efr(Tft)I,(/oo
K

Ixe"2—0)(T—1)

1
w0
> e L (2(/Xy) dy

X< S| X<

/N

1
(2—-0) _(x v
)22 Y et L (2y/%y) dy,
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X<

2
o
=== yx= (er(270)T _ er(279)t)
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Dynamics of Implied Volatility for CEV model
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Dynamics of Implied Volatility for CEV model cont.
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Stochastic Volatility CEV model

Stochastic Volatility CEV model

Underlying asset price Model X; and Y;

0
dXt = ,LLXtdt + f( Yt)Xt2 th (1)
dY: = a(m — Yy)dt + BdZ, (2)

where f(y) smooth function and the Brownian motion Z, is corre-
lated with W; such that

d<W,Z>.= pdt. (3)

In terms of the instantaneous correlation coefficient p, we write

21: :/)Wt+ \/1—p22t
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Characteristics

@ The new volatility is given by the multiplication of a function
of a new process

@ The new process is taken to be an lto process (O-U process):

@ o = rate of mean reversion.
Assume that mean reversion is fast.
So, « is large enough.
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Corrected Pricing

Use Risk Neutral Valuation method
Equivalent martingale measure @, Option price is given by the
formula

P(t,x,y) = E9le” T In(X7)| X = x, Ye = y] (5)
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Corrected Pricing Theorem

Theorem 3.1

The option price P(t,x, y) defined by (5) satisfies the Kolmogorov
PDE

1 1
P+ 5 2(0)x P + pBE(Y)X2 Py + 56°Py,
+rXPX + (a(m_y) _B/\(taXJ’))Py —rP = Oa (6)

where

w—r
At x,y) = p———= + V1 - p>y(y).

fy)x 2
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Asymptotic theory

@ Develop an asymptotic theory on fast mean reversion

@ Introduce A small parameter ¢

g

is fixed in scale as € become zero.

@ Assume v =

N

a~ O, B~0O?), and v~ O(1).
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Singular Perturbation

To solve the PDE (6), we use Singular Perturbation method.

Procedure

@ Substituting the asymptotic series

[e.e]

P(x;€) ~ ZE”P,,(X)
n=0
into the differential equation.
@ Expanding all quantities in a power series in €.

@ Collecting terms with same powers of € and equating them to
zero.
@ Solving this hierarchy of the problem sequentially.
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Asymptotic theory

After rewritten in terms of €, the PDE (6) becomes

1212

2 Pyy

1 V2v
P: + Efz(y)xoPXX T fly Fy)x2 Py + =
1 \/EI/
+rxPy + (g(m —y)— ﬂ—\/g A(t,x,y))P, —rP = 0.

Collecting by € order,

A

(VzPyy +(m— Y)Py) + ;(ﬁpl/f(y)ngxy — \f21//\Py)

1
+(P: + §f2(y)X9PXx + rxPyx — rP) =0
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Asymptotic theory cont.

Define operators Lo, L1, L5 as

Lo =202, + (m = y)d, (7)
L1 = V2puf(y)x3 02, — V2uA(t,x, y)dy, (8)
L2 = 00t SF VAR + r(xd, — ) )

then, the PDE (6) can be written as

1 1
il pe — 1
(6[,o+ \ﬁﬁlJr,Cz) 0 (10)
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Asymptotic Expansion

Expand P€ in powers of y/e:
PE:P0+\@P1+€P2+H- (11)

Here, the choice of the power unit /€ in the power series
expansion was determined by the method of matching coefficient.
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Asymptotic Expansion cont.

Substituting the PDE (10),

*ﬁopo + \[ (LoP1 + L1Po)

+ (LoP2 + L1P1 + L2Py) +
\@(£0P3+£1P2+£2P1)+'--:07 (12)

which holds for arbitrary ¢ > 0.
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Asymptotic theory cont.

If solution to the Poisson equation

Lox(y) +¢(y) =0 (13)

exists, then the following centering (solvability) condition must sat-
isfy < 1 >= 0, where < - > is the expectation with respect to the

invariant distribution of Y;. If then, solutions of (13) are given by
the form

x(y) = /Ot EY[4(Y:)] dt + constant. (14)

Note:

/ B F(y)dy. ()=\/21T7exp(—
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Asymptotic Expansion cont.

From the asymptotic expansion (12) 1/e¢ order, we first have
LoPy = 0. (15)

Solving this equation yields
(m—2)?

y
Po(t,x,y):cl(t,x)/ e 2?2 dz+ ot x)
0

for some functions ¢; and ¢, independent of y.
@ ¢; = 0 is required.

e Py(t,x,y) must be a function of only t and x

PO = Po(t,X)-
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Asymptotic Expansion cont.

e From the expansion (12) 1/,/e order ,
LoP1+ L1Py =0

@ Known £L1Py =0
o Get LoP1 =0

P1 = Py(t,x) (16)
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Asymptotic Expansion P,

Theorem 3.2

The leading term Py(t, x) is given by the solution of the PDE

OPy, 1, ,0%P oP;
ot T2 <f>xX%53 X

with the terminal condition Po(T,x) = h(x).

+ r(x —P;)=0 (17)
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Proof of Theorem 3.2

Proof
From the expansion (12), the PDE

LoPo+ L1P1+ L2Py=0 (18)
Since £1P; =0, then
LoP>+ LoPy =0 (19)

which is a Poisson equation.
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Proof of Theorem 3.2 cont.

From Lemma 3.1 with ¢ = L3Py, Po(t, x) has to satisfy the
centering condition

< [,2 > Po =0 (20)
with the terminal condition Py( T, x) = h(x), where
1
<Lo> = 0+ 5 < 2> xP0% + r(x0y — ).

Thus Py solves the PDE (17). O
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Asymptotic Expansion P; cont.

Theorem 3.3

The first correction Py(t,x) is given by the solution of the PDE

a7 T3 <X om +rxg = —P)=
V3X5( 8x2) Vax Ox? (21)

with the final condition P1(T,x) = 0, where V3 and V5 are given
by (22) and (23), respectively.
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Asymptotic Expansion P;

For convenience,

-2

Vs(x; 0) = \%px 2 <fihy>, (22)
Va(xi A; 0) = \%(pxg <y > = <My >) - (&)

where 1(t, x, y) is solution of the Poisson equation

Lo = vy, + (m—y), = (FP— <f2>)x772 (24)
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6 =1.95and e = 0.01

0,=1985¢=001

30 T T
Line 1
——=—Line 2 .
28| =——Line3 yd 1

Value

% G 0.85 DIB 0.95 1 1.05 1}1 1.15 1.2 1.25
Underlying Asset/Strike (S/K)

Line 1 = Py, Line 2 =Py, Line 3= Py+ /eP;
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6 =2.00 and € = 0.01

6,=20,2=0.01

35 T T T T
—Line 1
———Line2
By Line 3

il I I I I I
08 085 08 085 1 106 11 1168 12 126

Underlying Asset/Strike (S/K)

Po(t,x) with K =100, T =1, 3 =0.165, and r =0.02.
computed with terminal condition h(x) = (x — K)™.
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6 = 2.05 and ¢ = 0.01

8,=205=001

35 T T T T T T T T
Line 1
—=—=Line2

0F 1
—Line3

Value

DDB 0.85 DIB 0.95 1 1.05 1.I1 1.15 1.2 1.25
Underlying Asset/Strike (S/K)
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Corrected Price by o

35 T T
Line 1

———Line2
—Line3

Value

EE‘IB U.IEE EIIB U.I95 1 1 65 1.I1 1 ‘15 1.2 1.26
Underlying Asset/Strike (S/K)

Line1:60=1.95, Line2:6=1.95, Line3:6=2.05
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Dynamics of Implied Volatility (¢ = 1.9 and § = 1.9
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Line 4 : Xp = 105, Line 5: Xp =110
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Dynamics of Implied Volatility (6 = 1.95 and 6 = 1.975)
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Dynamics of Implied Volatility (6 = 2.00 and 6 = 2.025)
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Dynamics of Implied Volatility (6 = 2.05 and 6 = 2.075)
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Dynamics of Implied Volatility (6 = 2.1)
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Remark

@ Implied volatility curve move from left to right for § > 1.975

@ For 6 > 2, The implied volatility curve seems to be skew,
unlike CEV model.
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Conclusion

o Corrected Price (A new hybrid model)

@ Right dynamics of Implied Volatility

e Stability of Hedging

o Still ongoing researsh(Fitting to Market Data)
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