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Drawback of Black Scholes Model

Smile curve

Rubinstein (1985)

Jackwerth and Rubinstein (1996)

In B.S. Model, Implied Volatility curve is flat.

We need to use the implied volatility which explicitly depends
on the option strike and maturity.
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Local Volatility Model

Local Volatility Model

One needs volatility to depend on underlying

Local Volatility Models

dSt

St
= µ(St , t)dt + σ(St , t)dWt

The dynamics of Implied Volatility in Local Volatility model.

This is opposite to real market.(Hagan, 2002)
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CEV Model

CEV (constant elasticity of variance) diffusion model

Xt stock price s.t.

dXt = µXtdt + σX
θ
2

t dWt

Introduced by Cox and Ross(1976)

Studied by Beckers (1980), Schroder(1989), Boyle and
Tian(1999), Davydov and Linetsky(2001), Delbaen and
Schirakawa(2002), Heath and Platen(2002), Carr and
Linetsky(2006) and etc.

Analytic tractability
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CEV Model cont.

When θ = 2 the model is Black-Scholes case.

When θ < 2 volatility falls as stock price rises.
⇒ realistic, can generate a fatter left tail.

When θ > 2 volatility rise as stock price rises.
⇒ (futures option)
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CEV Model cont.

Theorem (Lipton ,2001)

The call option price CCEV for Xt = x is given by

CCEV (t, x) = e−r(T−t)x

∫ ∞
Ǩ

(
x̌

y

) 1
2(2−θ)

e−(x̌+y)I 1
2−θ

(2
√

x̌y) dy

+ e−r(T−t)K

∫ ∞
Ǩ

(y

x̌

) 1
2(2−θ)

e−(x̌+y)I 1
2−θ

(2
√

x̌y) dy ,

where

x̌ =
2xer(2−θ)(T−t)

(2− θ)2χ
, χ =

σ2

(2− θ)r
(er(2−θ)T − er(2−θ)t)

Ǩ =
2K 2−θ

(2− θ)2χ
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Dynamics of Implied Volatility for CEV model

θ = 1.9
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Dynamics of Implied Volatility for CEV model cont.

θ = 2.1
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Stochastic Volatility CEV model

Stochastic Volatility CEV model

Underlying asset price Model Xt and Yt

dXt = µXtdt + f (Yt)X
θ
2

t dWt (1)

dYt = α(m − Yt)dt + βdẐt , (2)

where f (y) smooth function and the Brownian motion Ẑt is corre-
lated with Wt such that

d<W , Ẑ>t= ρdt. (3)

In terms of the instantaneous correlation coefficient ρ, we write

Ẑt = ρWt +
√

1− ρ2Zt (4)
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Characteristics

The new volatility is given by the multiplication of a function
of a new process

The new process is taken to be an Ito process (O-U process):

dYt = α(m − Yt)dt + βdẐt .

α = rate of mean reversion.
Assume that mean reversion is fast.
So, α is large enough.
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Corrected Pricing

Use Risk Neutral Valuation method
Equivalent martingale measure Q, Option price is given by the
formula

P(t, x , y) = EQ [e−r(T−t)h(XT )|Xt = x ,Yt = y ] (5)
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Corrected Pricing Theorem

Theorem 3.1

The option price P(t, x , y) defined by (5) satisfies the Kolmogorov
PDE

Pt +
1

2
f 2(y)xθPxx + ρβf (y)x

θ
2 Pxy +

1

2
β2Pyy

+rxPx + (α(m − y)− βΛ(t, x , y))Py − rP = 0, (6)

where

Λ(t, x , y) = ρ
µ− r

f (y)x
θ−2

2

+
√

1− ρ2 γ(y).
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Asymptotic theory

Develop an asymptotic theory on fast mean reversion

Introduce A small parameter ε

ε =
1

α

Assume ν =
β√
2α

is fixed in scale as ε become zero.

α ∼ O(ε−1), β ∼ O(ε−1/2), and ν ∼ O(1).
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Singular Perturbation

To solve the PDE (6), we use Singular Perturbation method.

Procedure

Substituting the asymptotic series

P(x ; ε) ≈
∞∑

n=0

εnPn(x)

into the differential equation.

Expanding all quantities in a power series in ε.

Collecting terms with same powers of ε and equating them to
zero.

Solving this hierarchy of the problem sequentially.
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Asymptotic theory

After rewritten in terms of ε, the PDE (6) becomes

Pt +
1

2
f 2(y)xθPxx + ρ

√
2ν√
ε

f (y)x
θ
2 Pxy +

1

2

2ν2

ε
Pyy

+rxPx + (
1

ε
(m − y)− β

√
2ν√
ε

Λ(t, x , y))Py − rP = 0.

Collecting by ε order,

1

ε

(
ν2Pyy + (m − y)Py

)
+

1√
ε

(
√

2ρνf (y)x
θ
2 Pxy −

√
2νΛPy )

+(Pt +
1

2
f 2(y)xθPxx + rxPx − rP) = 0
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Asymptotic theory cont.

Define operators L0, L1, L2 as

L0 = ν2∂2
yy + (m − y)∂y , (7)

L1 =
√

2ρνf (y)x
θ
2 ∂2

xy −
√

2νΛ(t, x , y)∂y , (8)

L2 = ∂t +
1

2
f (y)2xθ∂2

xx + r(x∂x − ·). (9)

then, the PDE (6) can be written as(
1

ε
L0 +

1√
ε
L1 + L2

)
Pε = 0 (10)
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Asymptotic Expansion

Expand Pε in powers of
√
ε:

Pε = P0 +
√
εP1 + εP2 + · · · (11)

Here, the choice of the power unit
√
ε in the power series

expansion was determined by the method of matching coefficient.
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Asymptotic Expansion cont.

Substituting the PDE (10),

1

ε
L0P0 +

1√
ε

(L0P1 + L1P0)

+ (L0P2 + L1P1 + L2P0) +
√
ε (L0P3 + L1P2 + L2P1) + · · · = 0, (12)

which holds for arbitrary ε > 0.
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Asymptotic theory cont.

Lemma 3.1

If solution to the Poisson equation

L0χ(y) + ψ(y) = 0 (13)

exists, then the following centering (solvability) condition must sat-
isfy < ψ >= 0, where < · > is the expectation with respect to the
invariant distribution of Yt . If then, solutions of (13) are given by
the form

χ(y) =

∫ t

0
E y [ψ(Yt)] dt + constant. (14)

Note:

〈ψ〉 =

∫ ∞
−∞

ψ(y)f (y)dy , f (y) =
1√

2πν2
exp

(
−(y −m)2

2ν2

)
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Asymptotic Expansion cont.

From the asymptotic expansion (12) 1/ε order, we first have

L0P0 = 0. (15)

Solving this equation yields

P0(t, x , y) = c1(t, x)

∫ y

0
e

(m−z)2

2ν2 dz + c2(t, x)

for some functions c1 and c2 independent of y .

c1 = 0 is required.

P0(t, x , y) must be a function of only t and x

P0 = P0(t, x).
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Asymptotic Expansion cont.

From the expansion (12) 1/
√
ε order ,

L0P1 + L1P0 = 0

Known L1P0 = 0

Get L0P1 = 0

P1 = P1(t, x) (16)
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Asymptotic Expansion P0

Theorem 3.2

The leading term P0(t, x) is given by the solution of the PDE

∂P1

∂t
+

1

2
< f 2> xθ

∂2P1

∂x2
+ r(x

∂P1

∂x
− P1) = 0 (17)

with the terminal condition P0(T , x) = h(x).
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Proof of Theorem 3.2

Proof
From the expansion (12), the PDE

L0P2 + L1P1 + L2P0 = 0 (18)

Since L1P1 = 0, then

L0P2 + L2P0 = 0 (19)

which is a Poisson equation.
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Proof of Theorem 3.2 cont.

From Lemma 3.1 with ψ = L2P0, P0(t, x) has to satisfy the
centering condition

<L2>P0 = 0 (20)

with the terminal condition P0(T , x) = h(x), where

<L2> = ∂t +
1

2
< f 2> xθ∂2

xx + r(x∂x − ·).

Thus P0 solves the PDE (17). �
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Asymptotic Expansion P1 cont.

Theorem 3.3

The first correction P1(t, x) is given by the solution of the PDE

∂P1

∂t
+

1

2
< f 2> xθ

∂2P1

∂x2
+ r(x

∂P1

∂x
− P1) =

V3x
∂

∂x
(x2∂

2P0

∂x2
) + V2x

2∂
2P0

∂x2
(21)

with the final condition P1(T , x) = 0, where V3 and V2 are given
by (22) and (23), respectively.
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Asymptotic Expansion P1

For convenience,

V3(x ; θ) =
ν√
2
ρx

θ−2
2 < f ψy >, (22)

V2(x ; Λ; θ) =
ν√
2

(
ρx

θ
2 < f ψxy > − <Λψy >

)
, (23)

where ψ(t, x , y) is solution of the Poisson equation

L0ψ = ν2ψyy + (m − y)ψy =
(
f 2− < f 2>

)
xθ−2. (24)



Introduction Stochastic Volatility CEV Numerical Implementation Conclusion Bibliography

Outline

1 Introduction
Background
Purpose

2 Stochastic Volatility CEV
Dynamics
Characteristics
Corrected Price
Asymptotic theory

3 Numerical Implementation
P0 and P1

Implied Volatility

4 Conclusion

5 Bibliography



Introduction Stochastic Volatility CEV Numerical Implementation Conclusion Bibliography

θ = 1.95 and ε = 0.01

Line 1 = P0, Line 2 = P1, Line 3 = P0 +
√
εP1
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θ = 2.00 and ε = 0.01

P0(t, x) with K = 100, T = 1, σ = 0.165 , and r = 0.02. It is
computed with terminal condition h(x) = (x − K )+.
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θ = 2.05 and ε = 0.01
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Line 1 : θ = 1.95, Line 2 : θ = 1.95, Line 3 : θ = 2.05
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Dynamics of Implied Volatility (θ = 1.9 and θ = 1.925)

(a) θ = 1.9 (b) θ = 1.925

Line 1 : X0 = 90, Line 2 : X0 = 95, Line 3 : X0 = 100,
Line 4 : X0 = 105, Line 5 : X0 = 110
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Dynamics of Implied Volatility (θ = 1.95 and θ = 1.975)

(c) θ = 1.95 (d) θ = 1.975
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Dynamics of Implied Volatility (θ = 2.00 and θ = 2.025)

(e) θ = 2.0 (f) θ = 2.025
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Dynamics of Implied Volatility (θ = 2.05 and θ = 2.075)

(g) θ = 2.05 (h) θ = 2.075
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Dynamics of Implied Volatility (θ = 2.1)

(i) θ = 2.1

Remark

Implied volatility curve move from left to right for θ ≥ 1.975.

For θ ≥ 2, The implied volatility curve seems to be skew,
unlike CEV model.
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Conclusion

Conclusion

Corrected Price (A new hybrid model)

Right dynamics of Implied Volatility

Stability of Hedging

Still ongoing researsh(Fitting to Market Data)
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Thank you for your attention!
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