A Class of GIG Processes
An example of an example

Edward Hoyle

Department of Mathematics
Imperial College London
London, SW7 2AZ
ed. hoyl e08@ nperi al . ac. uk

work with L.P. Hughston and A. Macrina

25 June 2010, Toronto

Edward Hoyle (Imperial College) A Class of GIG Processes 25 June 2010, Toronto 1/17



Chronology

© The Brody-Hughston-Macrina (BHM) approach to
information-based asset pricing is developed (2006-2008). See,
e.g., Macrina (2006).

© The gamma bridge information process is introduced for the
modelling of cumulative gains/losses (BHM (2008)).

© The BHM approach is extended to a class of Lévy-bridge
information processes (H., Hughston and Macrina (2009)).

© Lévy-bridge information is applied to non-life reserving
(H., Hughston and Macrina (2010)).

© The work presented here is based on an example from 4 which, in
turn, is an example of 3.
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GIG processes |

@ We consider a class of increasing, stochastically-continuous
processes, with stationary increments, defined over a finite time
horizon [0, T].

@ In general, the increments of the processes are not independent.

@ The a priori time-T distribution of the processes are generalized
inverse-Gaussian (GIG).

@ The processes are Markov.
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GIG distribution
@ The density of the GIG distribution is

A xA—1 exp —1(52x1 +’72X2
faic(X:A,6,7) = L0 (%) ( |2<>\([’75] ))’

where 4,7 > 0, A € R, and K, [z] is the modified Bessel function.
@ The kth moment of GIG random variable X is

Kok 6\
=y (3)

@ The following identity is useful:

n

T . i

Kniaolz] =/ 55€7° Y (n+3.))(2z) 7,
j=0

where (m, n) is Hankel's symbol

Mm+1/2+n]
(m,n) = niffm+1/2 —n|’
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GIGwithA=n—-1/2

@ Fix ,c > 0 and define

k
6 (x) = foic (x: k — 1/2,ct,7),
fork e Ngandt > 0.
° qt(o)(x) is an inverse-Gaussian density and has kth moment

m®) = [ ] Z(k —1/2,j)(2cty)”

@ Fix n € Ny, then define the set of rational functions {ws(f)(x)}ﬂzo

by
Mm" Y, (miDx
Zj 0( )m'(l'n tJ)XJ

wg (x) =

for0<s<t<T.
@ It can be shown that > _ 0W(k)( x) = 1.
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Figure: The rational functions {WS(:()} forn=5y=2,c=2,s=1,t=3, and
T =
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GIG processes |l

@ Fix a probability space (22, F, Q).
@ We define the Markov process {& }o<t<t by

@[&edyms]—Zw (&)al) (v — &),

y q# ) (Y — &)

Qlér e dy [&] = -
T s m{ k)

k= 0§S

for0 < s <t < T, and with initial condition &, = 0

@ Note that it is non-trivial to prove that {& } is well defined.

@ A priori, & has a GIG distribution with parameters 6 = cT, v > 0,
and A=n—-1/2.

@ The increment & — & depends on the first n powers of &s.
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Moments of the terminal value
® The moments of & can be calculated as

Zn-ﬁ-k (n-@-k) (n+k —) ft
Zj O( )m(n J)it

E|¢|&] = ,
fork e N,.

@ These moments form a class of martingales, and are rational
functions of an increasing Markov process.

@ The Laplace transform of &1 is

E [e%"‘zﬁ

& =
S o(>rﬁ$” tkstk
Shoo (Hm{T ek

for 0 < a < v, where 5 = /12 2, and m(k) is the kth moment
of the IG distribution with parameters 0= ct and v = 7.
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The Non-Life Reserving Problem

@ Consider a non-life insurance company that underwrites various
risks for a particular year in return for premiums.
@ The insurer incurs claims over the one year period. However:

» there may be a delay between the incurred date and the reported
date,

» the total size of the claim may not be known when the claim is
reported,

» the claim may not be paid by a single cash flow on a single date.

@ The insurer may be paying these claims for many years.

@ The problem is: how much money should the insurer reserve at a
given time to cover all future claim payments?

» This has implications for the insurer’s accounting, tax liability,
solvency, capital adequacy, and investment strategy.
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Preliminaries

We examine the problem of reserving for an insurance company.
@ We consider claims incurred from a single line of business during
some origin period [0, T] C [0, T].
@ The ultimate loss U+ is the total amount of claims paid.

@ The insurer needs to hold reserves to cover future losses, and so
wishes to estimate Ut, and to quantify the estimation error.

@ The information used to estimate the reserves can be described
by a reserving filtration {F; }o<t<T.

@ Attimet < T, the best estimate (ultimate loss) is Ui = E [Ut | #].
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GIG-process model

We make the following assumptions:
© All claims have been settled (paid) at time T.
@ U is a GIG random variable with parameters § = cT, v, and

A=n—-1/2.
© The (cumulative) paid-claims process {&} is a GIG process with
&t = Ur.

© The reserving filtration {F} is generated by {&}.
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Best-estimate process simulations
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Figure: Paid-claims process (blue) and best-estimate process (red) with
n=2,T=1c=5,~v=05. The green lines give the best estimate + one
standard deviation.
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VaR and CVaR

@ The F;-conditional distribution function of the ultimate loss
Ur =¢&ris
Jeyh @ (y — &) du
K
Sk (Mgl

@ The value-at-risk at level « is defined as

VaR, = F,}a),  a€(0,1),

Ft(U) =

and can be found by numerical inversion.
@ At time t, the conditional value-at-risk at level « is defined as

CVaR, = E[Ut |Ut > VaR,, &].
@ A short calculation yields

i (e mi e fVaRau““ (v - g)du

(1-a) Zk:o (k) mT _t §t
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Tail-risk plots
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Figure: Paid-claims process (blue) and best-estimate process (red) with
n=2T=1c=5,~=10. The solid green line is the 95% VaR, and the
dotted green line is the 95% CVaR.
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Extreme Events

@ For0 <t < T we have

im QLU >x (6] miY exp {39%6 — cty}

% " Q[Ur > X] S (BmiT ek

@ This shows that the tail of the conditional distribution of Ut is as
heavy as the tail of the a priori distribution.

@ This is a desirable property if the insurer is exposed to
catastrophic losses.

@ “The size of a catastrophe does not diminish with time.”

@ Note, on the other hand, that if {X;} is a Brownian motion,
geometric Brownian motion, gamma process, or VG process then

- QX > x| X]
rl QXr >x]
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Derivation of the GIG process

@ Let {S;} be a stable-1/2 subordinator. That is, {S;} is an
increasing Lévy process with Laplace transform

log E[fe %] = —ct \/g, forc > 0.

@ Let X be a GIG random variable with parameters § = cT, v > 0,
and A=n-1/2.
@ Then the conditioned process

{St}‘ST:X (OSt ST) (1)

is a Lévy random bridge (LRB).

@ LRBs are Markov processes, and analysis of the transition law of
(1) show that it is identical in law to the GIG process {¢; }.
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