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Exact Sampling of Jump-Diffusion Processes

Jump-Diffusion Processes

e Ubiquitous in finance and economics
— Price models: equity, commodity, rates, energy, FX
— Default timing models (jump component)
e We develop a method for the exact sampling of a jump-diffusion

process with state-dependent drift, volatility, jump intensity, and
jump size

— Leads to unbiased simulation estimators of derivative prices,
risk measures, and other quantities

e The method extends an innovative acceptance/rejection scheme
developed by Beskos & Roberts (2005, AAP) and Chen (2009) for
diffusions
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Jump-Diffusion
e Fix a filtered probability space (2, F,F,P)
e For suitable functions 1 and o, consider the SDE
dX; = w(Xy)dt + o(Xy)dW, + dJ,

where W is a standard Brownian motion and J is a jump process

Jt = Z C(XTn_7Zn)

’I”LSNt

— N is a counting process with event times (7;,) and intensity
A+ = A(X;_) for a suitable function A

— (Z,) is a sequence of mark variables valued in

— c: Dx X EF— Dx determines the jump magnitudes

e J is self-exciting; dependence between jump sizes and frequency
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Jump-Diffusion

e For a suitable function f and a horizon 1" we wish to calculate

E{f(X7,(J)i<T)}

— Price of a derivative written on X7

— Price of a credit derivative written on J

e Alternative approaches
— Analytical solutions: rare; e.g. Merton and Kou models
— Semi-analytical transform approaches: AJDs, LQJDs, Lévy
— PIDE approaches: fewer restrictions

— Monte Carlo simulation: perhaps the widest scope
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Discretizing the Jump-Diffusion

Standard approach to simulating X

e X is approximated on a discrete-time grid
— Euler or higher order scheme for diffusion component

— Thinning or time-scaling scheme for jump times 71,

e Simulation estimator is biased
— Magnitude of the bias? Confidence intervals?
— Convergence of scheme?

— Allocation of computational budget?
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Discretizing the Jump-Diffusion
Time-scaling for jumps: T}, = inf{t : fo ds > &1+ -+ &}
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Exact Sampling

e \We provide an exact sampling scheme for X that avoids
discretization entirely, and leads to unbiased simulation estimators

e First step: transform X into a unit-diffusion SDE
— Lamperti transform F(x) = f;o ﬁdu
— Then Y; = F(X}) solves

dY; = a(Y;)dt +dW; +dJ}

where
M(F‘l(y))_laf 1
a(y) c(F1(y) 2 (F ()
J= ) Ay, Zn)
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Exact Sampling

Assumptions
1. o(x) is bounded away from 0

2. p(x) and A(x) are continuously differentiable and o(x) is twice
continuously differentiable.

3. Conditions on a(y) and ¢(x, z) guaranteeing that Y does not
reach the boundaries in finite time (known).
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Acceptance/Rejection Scheme
e The exact method uses an A/R scheme

e Suppose we want to sample from a density f(y) and there is
another density g(y) and a constant ¢ > 0 such that

g =
e A/R scheme
1. Draw a sample Y from g
2. Draw a Bernoulli variable I with success probability c - %

3. Accept Y as a sample from fif I =1
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A/R for Continuous Y
Beskos & Roberts (2005, AAP)

e We wish to sample Y7 using the A/R scheme

e Under Novikov and additional boundedness conditions,

f;;? x ]E[exp ( — /OT Qb(Ws)ds) ‘ Wr = ?J] =: H(y)

where ¢ = (o + a?)/2 and ¢(y) is a proposal density

e For the A/R step, note that H(y) = P(Mp = 0| W = y) where
M is a doubly-stochastic Poisson process with intensity ¢(W5)

— The Bernoulli indicator {I = 1} = { My = 0} can be generated
by sampling Mr given Wpr =Y with Y drawn from g

— If ¢(z) < 7, then this can be done by thinning a Poisson
process with intensity m (requires sampling from BB)
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A/R for Continuous Y
Localization: Chen (2009)
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R for Continuous Y

Generating the first piece of Y

Kay Giesecke

Target exit time (; =inf{t > 0:|Y; —Yy| > L} for L > 0
Proposal exit time 7 = inf{t > 0: |W;| > L}

The LR between ((1,Y7 — Yy) and (7, W..) is proportional to

E [exp ( _ /OT &(Yo + Ws)ds) ‘ 7, WT]

Because of the continuity assumptions, ¢(Yy + W) is bounded
and thinning can always be used in the acceptance test

— Need to sample from Brownian meander

The density of 7 is known and can be sampled from using the
method of Burq & Jones (2006)
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A /R for Jump-Diffusion Y

Introducing jumps

A
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R for Jump-Diffusion Y

Generating the first piece of Y

Kay Giesecke

Sample 7 as before using a bound L. Suppose 7 < T'.

Sample candidate jump times (o1,...,0,) of Y during [0, 7] from
a Poisson process with intensity 7 > A(F~1(Yo +y)), y € [-L, L]

Sample (Wy,,..., W, _,W.) from a Brownian meander

Perform acceptance tests for the o; by drawing Bernoulli variables
with success probabilities A(F~Y(Yy + W) /7

Perform acceptance test for ({1, Y,, — Yo, ... ,Yak_ —Yp) given the
proposal (7, Wy, ..., W, ), where o, is the first candidate jump
time of Y accepted in the previous step

If the skeleton is accepted, draw mark Z; and compute
YTl = Yak— + A(Yak_ , Zl)
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A /R for Jump-Diffusion Y

Likelihood ratio

e The LR for the last acceptance test is proportional to

ok
cAYo+Wo )| [exp (— / oYy + Wu)du> ‘ T Woryoooy Wy,
0

where A(x fo u)du and ¢ = (o + a?)/2

e Generate Bernoulli indicator by generating the jump times of a
doubly-stochastic Poisson process with intensity ¢(Yy + W,,)
— Thinning applies

— Sample from Brownian meander
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Numerical examples

e Jump-extended CEV model of Carr & Linetsky (2006):
dXt = (7“ + A(Xt))Xtdt + O'(Xt)th + th
where Xy > 0 and fora>0,b20,02%andﬁ<0
— A(x) = b+ ca®2?” is the jump intensity
— o(x) = axP*t! is the volatility
— c(x,2) = —xz for z € (0,1) is the jump size
e The firm defaults at the first jump time 17 of J

e The default intensity A = A(X) is unbounded

— Violates boundedness hypothesis of thinning scheme for jumps
(Glasserman & Merener (2003), Casella & Roberts (2010))

— Convergence order of discretization scheme unknown
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Numerical examples
e We are interested in X during [0,T A T1] for some T' > 0

e The target functional takes the form

f( X7, (Jt)i<r) = hi(X7) 1 1p=0y + ho(X7)1{ 5,200
Examples
— Probability of survival to T": h1(x) =1 and ho(z) =0
— European put with strike K and maturity 1"
hi(z) =e ™ (K — )" and hy(z) = Ke ™t

e Carr & Linetsky (2006) provide analytical solutions to these and
other quantities
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Numerical examples

e \We estimate the price of a European put on X

e We consider the RMSE = \/Bias2 + SE? for
— The exact method, for which the bias is 0

— The discretization method (Euler plus time-scaling for jumps)

x The number of time steps is equal to the square root of the
number of trials (Duffie & Glynn (1995))
x The bias is estimated using 10 million trials

e Matlab implementation (favors discretization)
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Numerical examples

Xo=50,6=-1,r=0.05,a =50/4,b=0,c= 0.5, T =1, strike 5,
analytical value 0.1491

Method | Trials | Steps | Value Bias SE RMSE | Time (sec)
Exact 10K N/A | 0.1417 0 0.00809 | 0.00809 36.19
Exact 20K N/A | 0.1363 0 0.00561 | 0.00561 74.75
Exact 40K N/A | 0.1522 0 0.00419 | 0.00419 150.52
Exact 100K N/A | 0.1487 0 0.00262 | 0.00262 416.07
Exact 500K N/A | 0.1495 0 0.00117 | 0.00117 1905.71
Euler 10K 100 | 0.1417 | 0.0019 | 0.00809 | 0.00831 26.72
Euler 20K 140 | 0.1496 | 0.0018 | 0.00587 | 0.00624 75.19
Euler 40K 200 | 0.1422 | 0.0008 | 0.00405 | 0.00413 215.75
Euler 100K | 310 | 0.1531 | 0.0005 | 0.00265 | 0.00271 822.07
Euler 500K | 707 | 0.1478 | 0.0004 | 0.00117 | 0.00123 9373.81
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Numerical Examples

Convergence of RMSEs (log-log plot), strike K =5
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Numerical examples

Xo=50,6=-1,r=0.05,a=50/4,b=0,c= 0.5, T =1, strike 50,
analytical value 4.4118

Method | Trials | Steps | Value Bias SE RMSE | Time (sec)
Exact 10K N/A | 4.3773 0 0.09309 | 0.09309 36.19
Exact 20K N/A | 4.2248 0 0.06512 | 0.06512 74.75
Exact 40K N/A | 4.4464 0 0.04781 | 0.04781 150.52
Exact 100K | N/A | 4.4123 0 0.02996 | 0.02996 416.07
Exact 500K N/A | 44214 0 0.01344 | 0.01344 1905.71
Euler 10K 100 4.3198 | 0.0185 | 0.09345 | 0.09527 26.72
Euler 20K 140 4.451 | 0.0163 | 0.06742 | 0.06936 75.19
Euler 40K 200 | 4.3876 | 0.0157 | 0.04691 | 0.04946 215.75
Euler 100K | 310 | 4.4464 | 0.0081 | 0.03031 | 0.03136 822.07
Euler 500K | 707 | 4.3914 | 0.0039 | 0.01338 | 0.01394 9373.81
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Numerical Examples
Convergence of RMSEs (log-log plot), strike K = 50
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Extensions

e The target functional can take the form

E{f((X¢)tes, (Je)i<T)}

for a discrete set S of times t € [0, 7]

— Treatment of certain path-dependent payoffs

e The intensity can take the form

A =ANXo, Ji t)

23
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Conclusions

e We develop a method for the exact sampling of a one-dimensional
jump-diffusion process with state-dependent drift, volatility, jump
intensity and jump size

— Only mild conditions on the coefficients are required

e Numerical experiments indicate the advantages of the method
over a conventional discretization scheme

e Future research
— Efficiency: choice of localization bound

— Extension to multiple dimensions: stochastic volatility with
state-dependent jumps

Kay Giesecke



	Exact Sampling of Jump-Diffusion Processes
	Jump-Diffusion Processes
	Jump-Diffusion
	Jump-Diffusion
	Discretizing the Jump-Diffusion
	Discretizing the Jump-Diffusion
	Exact Sampling
	Exact Sampling
	Acceptance/Rejection Scheme
	A/R for Continuous Y
	A/R for Continuous Y
	A/R for Continuous Y
	A/R for Jump-Diffusion Y
	A/R for Jump-Diffusion Y
	A/R for Jump-Diffusion Y
	Numerical examples
	Numerical examples
	Numerical examples
	Numerical examples
	Numerical Examples
	Numerical examples
	Numerical Examples
	Extensions
	Conclusions


