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Introduction

The progressive enlargement of filtration plays an essential
role in the credit risk modelling.

Consider multiple default times 7 = (71,--- ,7n) on the
market (Q, A, P).

There are default-free market information (7t )10 and
default information D = o(1; At), 1 € © ={1,--- ,n}.
The global market information G; = F Vv Dtl VARERVA/D L
The pricing and hedging problems are considered in G,
however it is technically difficult to work with G; in general
since it is not generated by continuous processes.



Single default: before-default and after-default

For a single defaul 7, the before-default pricing on {7 >t}
(e.g. Bielecki-Jeanblanc -Rutkowski) is to establish a
relationship between G; and F; by the key lemma of
Dellacherie and Jeulin-Yor: for any A-measurable r.v. Y,

E[Y Loy | 7]
1{7>t}E[Y 1G] = ]L{T>t}W

On the after-default set {7 < t}, the default density
approach (El Karoui-Jeanblanc-J.) is suitable: for any
Fr @ B(R4)-measurable Y+ (),

1,y E [Y1(7)IG] = 1<y & [Y T 7;)((;;(9)‘]:t] ‘927 a.s.

where a1 (0) is the conditional density of 7 given F; wrt the
law of 7.



Generalization to multiple defaults

The pricing problem in G; is decomposed into a
before-default problem and an after-default one.

Each new problem is considered wrt the default-free
information #; and the impact of past default events can be
examined.

The Fi-conditional law of default or its density will play an
essential role.

Applications to pricing with multiple defaults and to
counterparty risks.



Decomposition on default scenarios

Letlc © ={1,--- ,n} and 7y = (7j)iel-
Describe the default scenario by the event

Al = (ﬂ{r, < t}) N (ﬂ{r. > t})
icl il
at time t, | denotes the default set.

All default scenarios: Q = UjcoA|.

Any Gi-measurable random variable Y; can be written in
the decomposed form

Yo=Y LyY{(n)

Ico

where Y/ (') is 7; ® B(R!, )-measurable on Q x R, .



Random measure of defaults

We describe the Fi-conditional law of 7 = (7, -+ , ).

Random measure 7 on (2 x RT, Foo ® B(RY)): for any
positive and F, ® B(R'}.)-measurable function h(s),
S = (Sla"' ’Sn),

E[ho(r)] = /hoo(s)/f(dw,ds).

The restriction x of u™ on 7 @ B(R'}) represents the
conditional law of + on F;: for any positive and
Fi ® B(RT)-measurable function hy(s

)
E[h(+ ]_/ht (dw,ds) = [ hy(s)u(dw,ds).



General pricing formula

Theorem
Let Y1 (7) be the payoff function where Y+ (s) is positive and
Fr @ B(R'.)- measurable. Thenforanyt < T,

f]t oo['c E[YT (S|),U-7|:|~7'—t](dw> dS)
E[Y1(7)|G] =) 1y—
[Y1(7)IG g@; A f]t,oo[lc pf (dw,ds) S1="

(1)

On each default scenario, (1) is interpreted as a
Randn-Nikodym derivative on 7 ® B(R!, ) and depends on
the past default events 7.

We observe a jump of the price at each default time.

Choose models of 47 for default correlations and explicit
pricing results.



Default density

Hypothesis
We say that 7 = (71, - - - , T) satisfies the density hypothesis if
the measure 47 is absolutely continuous wrt P ® v™ where v7 is

the law of 7.

» v7 is the marginal measure v™ of u™ on B(R"), i.e.,
vT(U) = pu7 (2 x U), VU € B(R]).

» Denote by oy(-) the density of u™ wrt P® v™ on
(2 xRY, A ® B(RY)),

uf (dw,ds) = at(s)P(dw) ® v7(ds).
» For any positive Borel function on R",

E[f ()R] = /R F(s)ar(s)v7(ds).



Pricing with density

For the k"-to-default swap, consider the ordered set of

defaults 71y < -+ < 7).
The key term for the pricing is the indicator default process
1{T(k)>T} with respect to the market filtration G;:

-]iT,OO[JC -]it,T]‘]\l Oét(s)VT(dS)
f]t,oo['c Oét(s)l/T(dS) S|=T7

1 NS ED I DY

[1|<k JDol, [J|<k

For CDO, the cumulative loss Ly = Y ; 1. <, pricing via
the ktD

(Lr —a)y = > _min(k —a, 1)1, <7}

k>a

Both ktD and CDO depend on the ordered successive
defaults.



Several remarks

The density approach can also be applied to ordered
defaults, making a link with the top-down models for the
loss process L.

The joint density characterize the correlation structure of
defaults in a dynamic manner.

Part of the joint density can be deduced from the individual
default intensity processes. To obtain the whole term
structure, we need more information.



Application: a contagion risk model

The density approach and the decomposition methodology
can be applied to multiple credit problems in a general way.

Consider a portfolio of assets whose value process S is
subjected to contagion default risks: an N-dimensional
G-adapted process S; = 37, Ly Si().

The asset value is affected by the counterparty defaults
and has a regime switching at each default

dS{(si) = Si(s1) * (u(s1)dt + y(s)dWy), t > sy
and there is jump given default
Sk, (s1) = S2,-(s3) * (L — 75, (2)),

where k = min{i € I|s; = s}, J =1\ {k} and y*K(-) is
Pr ® B(RY.)-measurable



Utility maximization of wealth

Investment strategy is characterized by a G-predictable
process m which satisfies m = ), JLA{jTt'(TI)

The wealth process X has the decomposed form
Xy = ZIA{Xt' (1) such that

dX{(s1) = X{(s))m(s1) - (s (s1)dt + X{(s)dWy), t > sy

and

Xs,,(81) = X3, -(s9)(L — 73, (59) - 3.1
Optimal investment E[U (X1 )] for admissible trading
strategies 7 or equivalently (7'(-));ce. The admissible set
Al(s)) such that [ |7l (si)o}(si)|?dt < oo and
mi(s))- " < 1foranyi ¢ landanyt €]s,, T].



Optimization decomposition

The global problem can be treated by the general theory of
optimization.
Motivations for adopting the decomposition methodology :

» financially, to analyze the impact of past defaults on the
optimal trading strategy

» mathematically, to avoid the difficulty related to jump
processes

By decomposition of the terminal wealth

EU(Xr)] = Y EfLy U (n))] = 3 E[ELy UXE(n))1Fr]]
la(®] Ice

—E| Z/ UXk(s)ar(s)ds|.

Ico T]'X]T ,00[¢

The idea is to consider a family of optimization problems at
each default scenario.



We shall treat the optimization problem in a backward and
recursive way. Let

J@(X7S77T ) —E[U(XT (S))O‘T(S”}_Sve]xe (s)=x

and
Vo(x,s) = esssup Jo(x,s,®).
TOEAO(s)

We define recursively for | C ©,

38,7 = E[U(X{(s,))/ﬁ ot (s)dsie

+oo[!

+Z/ V|u{|} &M (s100y), S1upiy ) dsi

ielc S\/|,

‘Fsvl:|
X4, (s1)=x

and correspondingly

Vi(x,s)) := esssup Jy(x,s), 7).
mleAl(s))



We obtain a family of optimization problems (V|(x,s))ice-

The whole system need to be dealt with in a recursive
manner backwardly, each problem concerning the filtration
(Ft)i>0 and the time interval [s,, T].

At each step, the problem V, involves the resolution of
other ones V) ;-

By resolving recursively the problems, we obtain a family of
optimal strategies (7'(-));ce, which shall give the optimal
strategy of the initial optimization problem.

Theorem

SUp E[U (Xt)]x,=x = Vo (X)- )
TeA



Conclusions

The default density approach provides a suitable
framework for financial problems concerning multiple
defaults.

By the two applications to pricing and to optimal
investment, we show that the initial problem in global
information filtration can be decomposed to problems in
default-free information filtration (often a Brownian
filtration), with which we are more familiar.

The decomposition method also allows to analyze the
contagion default impact in an explicit manner.
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Thanks for your attention !

=} = = = £ DA



