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Emissions Trading

Major new initiatives are underway to introduce CO2 cap-and-trade
schemes that will create new commodity markets.
AB32 proposal in California; various federal proposals; EU ETS.
The estimated size of the market is in the hundreds of billions or even
trillions of dollars.
Key regulatory details are still unresolved and undergo active public
debate.
Crucial to understand the financial implications of these initiatives on
energy producers.
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A New Commodity Market

Compared to existing markets, cap-and-trade is fundamentally different:
A finite resource is initially allocated and subject to exhaustion.
A well-defined horizon (e.g. 1 year) exists for each allocation.
The permit prices converge to deterministic values as horizon
approaches.
Price formation is driven by participant strategies: must be endogenous
to any model.
Game-theoretic aspects emerge in the emissions market.
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Effect on Producers

The foremost constituency affected by cap-and-trade would be energy
producers.
The net profit of energy production would change from the spark-spread
to the clean spread.
Commodity prices (input fuel, output fuel) are stochastic.
Must take into account (dynamic) strategies of other participants.
Feedback between production policies and carbon prices.
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Model Setup

We focus on the timing optionality within a real-options framework.
Consider a duopoly – two producers (representing different sets of power
plants).
Each one sells electricity into a stochastic market at price Pt .
Need emission permits to produce. Must buy CO2 permits on the market
at price Xt .
Take a reduced-form price-impact model for (Xt ) (do not explicitly model
the remaining supply of permits).
Simplify the strategy set: at each time epoch either produce, or stay
offline, ξi (t) ∈ {0,1}.
Each producer’s policy influences changes in X ; ⇒ the scheduling
decisions of agents affect each other.
Discrete-time model.
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Objective

(Pt ) is exogenously given.

Mean increments of (Xt ) are controlled by ~ξ(t); correlated with
increments of (Pt ).
Changes in ξi are expensive: fixed switching costs Ki,ξi (t−1),ξi (t); induce
inertia and hysteresis.
Fixed horizon T : expiration date of the permits.
Each producer attempts to maximize

V i (0,p, x , ~ζ) = E

[
T∑

t=1

(
ξi (t)(aiPt − biX

(ξ)
t − ci )− Ki,ξi (t−1),ξi (t)

)]
.
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Dynamic Decision-Making

At each step, each producer decides whether to produce or not.
The chosen action results in immediate date t-payoff, as well as different
continuation values on [t + 1,T ].
Leads to a repeated 2× 2 stochastic game.
Bellman’s Principle is replaced by a game Nash Equilibrium (NE).
Pure Nash equilibria might not exist.
Existence: Need mixed equilibria.
Might also have multiple Nash equilibria.
Uniqueness: equilibrium refinement.
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Classification of 1-Period 2× 2 Games

Three equivalence classes:
A single dominating pure equilibrium (unanimity).
A competitive game (essentially zero-sum) which admits a unique mixed
Nash eqm.
A (anti-) coordination game which admits two pure eqm’s, a mixed one
and a continuum of correlated eqm’s – “battle-of-the-sexes” as above.
Profitable for each one to emit separately; not profitable to emit together.
Which producer will yield??
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Correlated Equilibria

Nash equilibrium: given the eqm strategy of the other player, maximizes
your expected payoff.
Overall payoff distribution is a product measure on the payoff space.
A correlated equilibrium (γ jk ) is a general probability distribution on the
payoff space. Known to all and fixed in advance.
Achieved by introducing a third (fictitious) agent, (regulator).
The regulator sends a private signal µi (γ) ∈ {0,1} to player i .
Given the signal (and implied strategy of the second player), optimal to
act according to µi .
Conditional on signal, equilibrium action is pure.
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Stopping Games
A stopping game: each agent chooses a stopping time τi , i = 1,2.
Stopping corresponds to action ’1’.
Payoff structure (Z); agent i receives (τ ≡ τ1 ∧ τ2)

(τ−1∑
t=0

Z 00
i (t)

)
+ Z 10

i (τ)1{τi<τj} + Z 01
i (τ)1{τi>τj} + Z 11

i (τ)1{τi =τj}.

Starting with known values at T move back in time; each period yields a
2-by-2 game with payoffs corresponding to conditional expectation of
next-period value.
Let Valγ(Zt ) be an equilibrium of a 2-by-2 one-period game with payoffs

Zt =

(
(Z̃1(t), Z̃2(t)) (Z 01

1 (t),Z 01
2 (t))

(Z 10
1 (t),Z 10

2 (t)) (Z 11
1 (t),Z 11

2 (t))

)
.

Stopping game values solve (V1(t),V2(t)) = Valγ(Zt ), with
(Z̃1(t), Z̃2(t)) ≡ (E[V1(t + 1)|Ft ] + Z 00

1 (t),E[V2(t + 1)|Ft ] + Z 00
2 (t)).
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Nash Equilibria in Stopping Games

To show existence of a pure Nash equilibrium need restrictive
assumptions (e.g. Dynkin zero-sum games, non-zero-sum monotone
games where Z 01

i ≤ Z 11
i ≤ Z 10

i ).
In general, must allow randomized stopping times.
This is an (Ft )-adapted stochastic process p = (pt ) with 0 ≤ pt ≤ 1 a.s.
τ(p) , inf{t : ηt ≤ pt} where ηt ∼ Unif (0,1) i.i.d.. pt is the probability of
stopping at date t , conditional on not stopping so far.
τ(p) is not (Ft )-adapted. Enlarge the filtration: τ(p) is a
(Ft ∨ σ(ηt ))-stopping time.
Shmaya & Solan (2004): any discrete-time stopping game admits a
mixed NE.
Ferenstein (2005) gave a construction using backward recursion.
Solution relies on recursive Nash equilibria and conditional expectations.
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CE in Stopping Games

A correlation law (γ jk (t)) is a function of (t ,Pt ,Xt ) and fixed/known in
advance. Gives a CE for any payoff structure Zt .
At each state t , agent i receives a private signal µi (t ; γ).
Resulting randomized stopping time is τi (γ). τi , τj are dependent!
At each stage γ jk (t) induces a CE – no incentive to deviate given µi (t ; γ).
Admissible overall strategies are G i -stopping times τi , with
G i

t = σ(Ps,Xs, µi (s),0 ≤ s ≤ t).
Game is non-cooperative; no possibility of threats, etc. Even if deviate
continue to receive future messages and no changes are made.
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Switching Game I

We have a switching game. This is a sequential stopping game: can
repeatedly “stop” to alter production regimes in response to changing
electricity prices, permit prices or other agent’s actions.

Player i : value function Vi (t ,Pt ,Xt , ~ξt ).

(V1(t, ~ζ),V2(t, ~ζ)) =

Valγ

(
(E~ζ [V1(t + 1, ~ζ)|Ft ] + Z1(t),E~ζ [V2(t + 1, ~ζ)|Ft ] + Z2(t)) (V1(t, ζ1, ζ̄2),V2(t, ζ1, ζ̄2)− K2,ζ2 )

(V1(t, ζ̄1, ζ2)− K1,ζ1 ,V2(t, ζ̄1, ζ2)) (V1(t, ζ̄1, ζ̄2)− K1,ζ1 ,V2(t, ζ̄1, ζ̄2)− K2,ζ2 )

)

where Zi (t) , (aiPt − biXt − ci )ζi .
Overall play:

I Observe current state (Pt ,Xt , ~ξt−1);
I Regulator carries out randomization;
I Receive private signals µi(t ; γ);
I Choose private actions;
I Joint action ~ξt is revealed, update state variables for next period;
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Switching Game II

Sketch of proof: Restrict strategy sets so that agents can only use up to
(n,m) switches.

Translates into an iterative stopping game with payoffs corresponding to
(n − 1,m), (n,m − 1) or (n − 1,m − 1) cases.

Fixing the strategy of one player; the other player solves a switching
problem with respect to the enlarged filtration G i .

By definition of γ this gives a CE in the switching game.

Take n,m→∞ to obtain a coupled pair of value functions as above.
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Digression: Single Player Case

Fix the strategy of one producer and consider the optimization of the
other one.
This becomes an optimal switching problem as studied in Carmona-M.L.
(2008).
The price impact leads to significant hysteresis effect.
If the price impact is severe enough, will always stay offline (or at least
with very high probability) – “blockading”.
From player’s 1 perspective, the actions of player 2 are randomized:
continuation values are unknown, optimal stopping in “random
environment”.
Otherwise, standard optimal stopping problem in the enlarged filtration
(G i

t ) that incorporates CE.
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Numerical Solution

To solve for the game values numerically need to
I Be able to compute equilibria in 2× 2 games;
I Compute conditional expectations.

Have explicit formulas for CE of 2× 2 games (answer depends on CE
choice).
Need approximation; recall that (P,X ) have continuous space.

Need to work with four different prob. measures P~ζ due to the price
impact.
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Least Squares Monte Carlo

Could use Markov Chain approximation, see Kushner (2007).
To compute the conditional expectations, another robust algorithm is to
use Monte Carlo simulation.
Simulate paths of (P,X ) for each of the four possible emission regimes ~ζ.
Continuation values are approximated through a cross-sectional
regression.
If the optimal decision is to switch to another regime, then use the
approximate continuation value; else recursively update the future
path-value.
Extends the Longstaff-Schwartz method for American option pricing (a
single optimal stopping problem).
A single-agent switching problem was solved in Carmona-M.L. (2008).
Straightforward extension to randomized stopping ... and to 2-player
game.
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Example

Pt+1 = Pt · exp(2(50− log Pt ) + 0.4εPt );
Xt+1 = Xt · exp(3(log(12 + 8ξ1(t) + 4ξ2(t)− log Xt ) + 0.25εXt ) with
E[εPεX ] = 0.6;
Revenues: Z1(t) = Pt − 2Xt − 10;

Z2(t) = 2Pt − Xt − 80;
T = 1, 26 periods (∆t = 1/26); K ≡ 0.2.
Using the simulation solver:

Correlation Law V1(0,P0,X0) V2(0,P0,X0)
Utilitarian 5.30 4.14

Egalitarian 5.33 4.20
Preferential 1 5.39 4.11
Preferential 2 5.02 4.24
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Date-t Equilibria

Figure: Optimal game strategy ξ∗ as a function of (Pt ,Xt) for t = 0.25. Here ~ζ = (0, 0).
The green region denotes the anti-coordination CE and the red region denotes the
competitive mixed NE.
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A Realized Equilibrium Path

Figure: Sample path of the controlled Xt , including the corresponding strategy
ξ∗ ∈ {00, 01, 10, 11}. The top left panel shows the cumulative P&L of each player; the
bottom left panel shows the raw P&L for each time period. Finally, the right panel
shows the evolution of the controlled Xt , as well as the implemented strategy (ξ1

t , ξ
2
t ).

Note as ξt increases, emissions rise and Xt tends to increase.

Ludkovski Switching Games



24 / 26

Emissions Trading Switching Games Numerics Conclusion

Conclusion

Stochastic games naturally occur in studying oligopolies.
The emission market would be a new important class of such problems.
Investigate the simplest possible scenario where the game is non-trivial:
a new model of an optimal switching game.
Already the problems of equilibrium-refinement and computational
tractability arise.
To Do: incorporate initial permit allocations/trading of permits. Allow for
endogenous price formation.
Continuous time formulation of correlated equilibria in stopping games??

Ludkovski Switching Games



25 / 26

Emissions Trading Switching Games Numerics Conclusion

References
California Air Resources Board
Climate Change Proposed Scoping Plan.
http://www.arb.ca.gov, October 2008.

E. J. Dockner, S. Jorgensen, N.V. Long, and G. Sorger,
Differential games in economics and management science.
Cambridge University Press, Cambridge, 2000.

R. Carmona, M. Fehr, J. Hinz and A. Porchet.
Market Design for Emission Trading Schemes
SIAM Review, forthcoming.

S. Hamadéne and J. Zhang.
The continuous time nonzero-sum Dynkin game problem and application in game options, 2009.
prepring, available at http://www-rcf.usc.edu/ jianfenz/Papers/HZ2.pdf.

H. J. Kushner.
Numerical approximations for nonzero-sum stochastic differential games.
SIAM J. Control Optim., 46(6):1942–1971, 2007.

D. M. Ramsey and K. Szajowski.
Selection of a correlated equilibrium in Markov stopping games.
European J. Oper. Res., 184(1):185–206, 2008.

M. Ludkovski
Stochastic Switching Games and Duopolistic Competition in Emissions Markets.
Preprint at arxiv.org/abs/1001.3455

Ludkovski Switching Games

http://www.arb.ca.gov


26 / 26

Emissions Trading Switching Games Numerics Conclusion

Formal 2× 2 Game

Payoffs H =

(
(α00, β00) (α01, β01)
(α10, β10) (α11, β11)

)
.

A policy is (~π, ~ρ) whence πi (resp. ρj ) is the prob. that player 1 (player 2)
chooses action i .

Value of a policy to players is Val(H;~π, ~ρ) :=

(∑
i,j πiρjα

ij∑
i,j πiρjβ

ij

)
.

γ = (γ ij ) is a CE if

{
γ00α00 + γ01α01 ≥ γ00α10 + γ01α11, γ11α11 + γ10α10 ≥ γ11α01 + γ10α00

γ00β00 + γ10β10 ≥ γ00β01 + γ10β11, γ11β11 + γ01β01 ≥ γ11β10 + γ01β00.

Leads to game values Valγ(H) :=

(∑
i,j γ

ijαij∑
i,j γ

ijβ ij

)
.
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