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Overview

§1 Nelson-Siegel (NS) models:
@ Daily yield curve estimation; forecasting.

§2 No arbitrage interest rate models:
@ Heath—Jarrow—Morton.

§3 Contribution: HJM = NS+Adj = NSpoj+ad
@ w<Adj, aqissmall.




Zero—coupon bonds (ZCB):

@ A ZCB is a contract that guarantees its holder the payment
of one unit of currency at time maturity.

@ P(t,x) is the value of the bond at time t which matures in x
years; P(t,0) = 1.
@ A ZCB price is a discount factor.
Common interest rates:
@ Continuously compounded yield: y(t,x) = —
@ Short rate: limy_,o+ y(t, x) = r(t).

log P(t,x)
—

1 P(t,x+e)—P(t,x)
P(t+x,¢€) € )

@ Forward rate: F(t,x,x +¢) =

@ Instantaneous forward rate:
f(t,x) = im0+ F(t,x,x +¢) = —208PEX) = p(4) — f(t, 1).

@ Relationship between f and y: y(t,x) = I [ f(t,s) d
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§1 Nelson-Siegel (NS) models

§1 Nelson-Siegel (NS) models:
@ Daily yield curve estimation; forecasting.



Nelson-Siegel Models

Yield curve estimation.
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Figure: The EUR ZERO DEPO/SWAP curve as of 24/06/2009.
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Yield curve estimation.
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Nelson-Siegel Models
Yield curve estimation.

@ Nelson-Siegel curves (and their extensions) are used by
banks (eg central/investment) to estimate the shape of the
yield curve.

@ This estimation is justified by principal component analysis:
low number of dimensions describes the curve with high
accuracy.

Nelson-Siegel yield curve:

1— e M 1—e™

@ y denotes the Nelson-Siegel yield curve.
@ )\, L, Sand C are estimated using yield data.




Nelson-Siegel Models

Yield curve estimation.

Shocking the level. Shocking the slope.
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Figure: Influence of shocks on the factor loadings of the
Nelson—Siegel yield curve.



Nelson-Siegel Models
Forecasting the term structure of interest rates.

Nelson—Siegel yield curve forecasting model:

y(t,x) = L(t) + S(t) (1_;%) + (1) <1—;‘” _ eAx)

Advantages:
v Simple implementation.
v Easy to interpret.

v’ Can replicate observed yield curve shapes.

v/ Can produce more accurate one year forecasts than
competitor models (Diebold and Li 2007).

A drawback?

Nelson—-Siegel models are not arbitrage—free (Filipovi¢c 1999).
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No arbitrage models

§2 No arbitrage interest rate models:
@ Heath—Jarrow—Morton.



No arbitrage models
The HJM framework

The HIM framework:

df(t,x) = o(f, t,x) dt + o(f, t, x) dW(1),
f(0, x) = f°(x),
where

of(t, x)
ox

a(f, t,x) =

X
+o(f t, x)/ o(f, 1, 5) ds
0

A concrete model is fully specified once f° and o are given. |




No arbitrage models
The HJM framework

Why use the HIM framework?
@ Most short rate models can be derived within this
framework.
@ Automatic calibration: initial curve is a model input.
@ Arbitrage—free pricing.
Interesting points:
@ In practice one uses 2-3 driving Brownian motions
("factors").
@ Despite this most HIM models are infinite—dimensional.
@ Choice of volatility (not number of factors) determines
complexity.
@ A HJM model will be finite—dimensional if the volatility is an
exponential polynomial function ie

n
EP(X) = 3 pa(x)e ™,
i=1

where p,. is a polynomial associated with )\;, (Bjérk, 2003).



No arbitrage models
The HJM framework

df(t,x) = o(f, t,x) dt + o(f, t, x) dW(1),
f(0, x) = f°(0, x).

Possible volatility choices:
@ Hull-White: o(f, t, x) = ce~?, (Ho—Lee: o(f, t, x) = o).
@ Nelson-Siegel: o(f,t,x) = a+ (b + cx)e” .
@ Curve—dependent: o(f,t,x) = f(t,x)[a+ (b + cx)e ¥].

Note: Curve—dependent volatility is similar to a
continuous—time version of the BGM/LIBOR market model.
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Research contribution

§3a Theoretical Contribution: HIM = NS+ Adj = NSpoj+44
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A specific HIM model

Consider the following HIM model:

ox
+ (021 + 0228 M + g23xe™ ) dBa(1),
(0, x) = NS(x).

df(t,X) = <af = C(O‘,X)> at + o14 dB1(t)
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A specific HIM model

Consider the following HIM model:

ox
+ (021 + 0228 M + g23xe™ ) dBa(1),
(0, x) = NS(x).

df(t,X) = <af = C(O‘,X)) at + o14 dB1(t)

(Bjérk 2003): f has a finite dimensional representation (FDR)
since there is a finite-dimensional manifold G such that

@ f°c¢g
@ drift and volatility are in the tangent space of G.
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A specific HIM model

Consider the following HIM model:
of
df(t, X) = a = C(O‘, X) at + o14 dB1(t)
+ (021 + 0226” + 023x6” ) dBo(1),
(0, x) = NS(x).

(Bjérk 2003): f has a finite dimensional representation (FDR)
since there is a finite-dimensional manifold G such that

@ f°c¢g
@ drift and volatility are in the tangent space of G.

For our model G = span{B(x)}
Y B(X) —_ (1 , e—/\x’ Xe—)\x7 X, Xze—)\x7 6_2)‘)(, Xe—2/\x’ X26—2/\X)
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A method to construct the FDR

@ f has an FDR given by f(t, x) = B(x).z(t) where
dz(t) = (Az(t) + b)dt + TdW(t), z(0) = z.

@ A b, X and z; are determined from
° B( x).zo = f°(x)

o B(x).b=C(o,x) = o) [X(B(s)o)T ds
o B(x)Az(t) = & d?};’z(t)
o B(x)X = B(x )

@ B(x) = (1,e ™, xe=™)

@ Method of proof: comparison of coefficients.
@ Easily generalised to exponential-polynomial functions.
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Our specific HIM model

Our specific HIM model has the following finite—dimensional
representation:

f(t,x) = z1(t) + zo(t) e~ + z3(t)xe ™ + z4(t)x
+ z5(t)x2e M 4 zg(t)e 2 + z7(t)xe ™ + zg(t)x2e 2V,

Interesting points:
@ Only zy, zo and z3 are stochastic.

@ A specific choice of initial curve will resultin z4, ..., Zg
being constant.
(This is closely related with work by Christensen, Diebold
and Rudebusch (2007) on extended NS curves).

@ This model has counter—intuitive terms.
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Our specific HIM model

How important is the Adjustment in the HIJM model?

Previous approach: Statistical

@ Coroneo, Nyholm, Vidova—Koleva (ECB working paper
2007).

@ The estimated parameters of a NS model are not
statistically different from those of an arbitrage—free model.

Our approach: Analytical
@ We quantify the distance between forward curves,

@ We analyse the differences in interest rate derivative
prices.
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Our Nelson-Siegel model: NS,

B(x).
e B(x).b= o) 5 (B(s)a)T ds]
° B(x)ﬁ\é(t) = %NSw
o B(x)% = P[B(x)o]

Projection formula: Projection of v onto Span (Bj, Bz, B3):

P : L% — Span B(x V%ZZ )i < v, Bj > Bj(x),
i=1 j=1

R,'j = f B,(S)BI(S) ds
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Our Nelson-Siegel model: NS,

HJM = NS+Adj= NSproj+A<3ﬁ
ag<Adj

@ Same approach can be used for infinite—dimensional HJM. J
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Research contribution

§3b Applied Contribution: HIM = NS+ Adj = NS+ ad
@ 1<Adj, aqis small.
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An application

Recall the HIM model:
of
df(t, x) = <8X + C(o, X)) dt + 011 dBy (1)
+ (021 + 0228 M + g23xe™ ) dBa(1),
(0, x) = MNS(x).
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An application

Recall the HIM model:
of
df(t, x) = <8X + C(o, X)) dt + 011 dBy (1)
+ (021 + 0228 M + g23xe™ ) dBa(1),
(0, x) = MNS(x).

We can rewrite this model as:
dY(t, x) = u(t, x) dt + Si(x) dB1(s) + Sz(x) dBx(S),

where Y(t, x) = log P(t, x),
Si(x) = o11X,

—xX\(_ XA -
Sa(x) = SHEHE)omIon) (5 e em).
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HJM parameter estimation

Our data set consists of daily observations of depo/swap yields
with maturities ranging from 3 months to 20 years. J
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HJM parameter estimation

Our data set consists of daily observations of depo/swap yields
with maturities ranging from 3 months to 20 years. ’

To estimate the volatility we use Principal Component
Analysis (PCA). ’
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HJM parameter estimation

Our data set consists of daily observations of depo/swap yields
with maturities ranging from 3 months to 20 years.

To estimate the volatility we use Principal Component
Analysis (PCA).

AY(t1) pa(1) Si(1)  S(1)

N : n : : L&
~ Z

AY(t,20) 11(20) S1(20) S»(20)
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HJM parameter estimation

Our data set consists of daily observations of depo/swap yields
with maturities ranging from 3 months to 20 years.

To estimate the volatility we use Principal Component
Analysis (PCA).

AY(t1) pa(1) Si(1)  S(1)

. N : - : : L&
~ Z

AY(t,20) S1(20) S»(20)

By applying PCA to our data set

@ we found that approximately 98% of the variance in the
yields is captured by the first two principal components.
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HJM parameter estimation

Our data set consists of daily observations of depo/swap yields
with maturities ranging from 3 months to 20 years.

To estimate the volatility we use Principal Component
Analysis (PCA).

AY(t1) pa(1) Si(1)  S(1)

. N : - : : L&
~ Z

AY(t,20) S1(20) S»(20)

By applying PCA to our data set

@ we found that approximately 98% of the variance in the
yields is captured by the first two principal components.

@ we determined the volatility associated with each factor.




HIM = NSpo;+Adj, Adj small

Parameter estimation
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Figure: First and second principal component and fitted curves.

@ First component fitted using Sy (x) = o11X.
@ Second component fitted using

e XN (—1+6X ) (Aopp+ang) e~ Ao
So(x) = ( ) +x (021 -— = 23).

A2
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Graphical analysis

Instantaneous forward rate (%)
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Figure: Some possible curve shapes generated by HIJM and NS
models after simulation for 5 years.



HIM = NSpo;+Adj, Adj small

Graphical analysis

Instantaneous forward rate (%)
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Figure: Some possible curve shapes generated by HIJM and NS
models after simulation for 5 years.
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Graphical analysis

Instantaneous forward rate (%)
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Figure: Some possible curve shapes generated by HIJM and NS
models after simulation for 5 years.
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Graphical analysis

Instantaneous forward rate (%)

2 , : —  averageHM
== averageNS
1r
ok, oo
0 5 10 15 20
Maturity (years)

Figure: Some possible curve shapes generated by HIJM and NS
models after simulation for 5 years.

Note: The average curve for any future time can be calculated
analytically at time 0.
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Graphical analysis
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Figure: Difference in the curves after five years.

Note: This difference remains the same for each realisation.
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Analysis of simulated prices

Theoretical ‘European call option’ prices on a 20 year bond:

To (years) 5 10 15

Strike 0.565 | 0.686 | 0.865

ntM(Ty) 0.0193 | 0.0146 | 0.00567
MNSeoi (Ty) | 0.0192 | 0.0144 | 0.00562

% difference | 0.47% | 1.18% | 0.89%

@ T, denotes option maturity; I denotes price.

@ The strike is the at—-the—money forward price of the bond
P(Ty,20 — Tp).
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Analysis of simulated prices

Theoretical ‘Capped floating rate note’ prices:

Cap 2% 3% 4%
[HIM 0.372 | 0349 |0.256
MINSor 0.371 | 0.256 |0.163

% difference | 0.045% | 0.043% | 0.033%
( of nominal)

@ Maturity of 20 years; nominal of 1; annual interest rate
payment.

@ Differences of 1-2% of nominal are common.
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Case Studies

Case Study 1: Cap/Floor

@ Nominal: EUR 180 million; Maturity: 30/6,/2014.
@ Receive capped and floored 3 month EURIBOR + spread:

Payout = (Nominal/4)*Max[0,Min[5%,ir+0.3875%]] J
@ Valuation:
Model Valuation (EUR) | % difference (of nominal)
Numerix (1F HW) | —2,045,140
HJM —2,085,124 0.022%
NS, —2,085,449 0.024%
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Case Studies

Case Study 2: Curve Steepener
@ Nominal: EUR 4,258, 000; Maturity: 30/5/2015.
@ Pay ‘Curve steepener payoff’ semi—annually:

Payout = (Nominal/2)*
Max["10 year swap"-"2 year swap",0] ’

@ Valuation:

Model Valuation (EUR) | % difference (of nominal)
Numerix (3F BGM) | 345,186

HJM 295,401 1.2%
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Contribution

1. HIM = NS+ Adj

@ initial curve affects shape of Adj, Adj contains counter—intuitive terms.

2- HJM B NSproj+Atﬂ, Adji< Adj J

3 Simulation and Case Studies:  HIM ~ NS,
@ for forward curve shapes, bond options, capped FRNs.
@ Numerix (3F-BGM) ~ 2F-HJM ~ NS
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Thank you

Research supported by:
@ STAREBEI (Stages de Recherche a la BEI).

@ The Embark Initiative operated by the Irish Research
Council for Science, Technology and Engineering.

@ The Edgeworth Centre for Financial Mathematics.

Disclaimer: This work expresses solely the views of the authors
and does not necessarily represent the opinion of the ECB or
EIB.




	Nelson–Siegel Models
	No arbitrage models
	HJM=NSproj+Adj, Adj small

