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Objective

Given a local volatility process

ds

S - 0'(57 t) th7

with o(S, t) depending only on the underlying level S and the time
t, we want to compute implied volatilities ops(K, T) such that

Cbs(s, t, K, T, O‘bS(K, T)) =K [(ST — K)+|St = S]

or in words, we want to efficiently compute implied volatility from
local volatility.
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Call price

Let p(t,s;t’,s") be the transition probability density. Then
C(s,t,K,T) = E[(ST—K)"|S:=5]

= /(s’ — K)Tp(t,s; T,s)ds'

As a function of t and s, p satisfies the backward Kolmogorov
equation:
1
Lp = p; + 55202(5, t)pss = 0,

Subindices refer to respective partial derivatives.
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Two to approximate

C(s,t,K, T) = /(s’ — K)Tp(t,s; T,s)ds'

@ Approximate transition density by heat kernel expansion.
@ Approximate the integral.
e Two approaches for approximating the integral lead to one
€xpansion.
@ The smaller the time to maturity, the better the
approximation, for both approximations.
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Heat kernel expansion

Heat kernel expansion for transition density p(t,s; t’,s’) when
t' — t is small:

_d2(s,s/,t)
e 2t'-p)

2n(t — t)s'o (s, t')

p(t,s;t',s') ~

> Hi(t,s,s')(t - t)k]

k=0

e d(s,s,t) =

s’ de
fs Ea(g,t)
o Holt.s.s') = \/ 2] exp [ [ 0 gy

) / HO(t75>Sl) S diil(n7sl7t)LHl'71
° Hilt,s,s') = sty Js Fotms)atn.d

. geodesic distance between s to s’
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Heat kernel expansion for Black-Scholes

Heat kernel expansion for Black-Scholes transition density
pos(t,s; t',s’) when t' — t is small:

_dbs(s )

k
e 9 (—1)% [op,(t' — 1)
Pb t/_t7575/ = |: s
o ) 27(t' — t)opss’ Z 8
" d ’
° db5(575,) = fss O’bff = U]t;s logs?

o HE(t,s,s')= /3

S
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Main idea

Implied volatility ops is defined as the unique solution to

C(S7 t, K, T) = Cbs(s, t, K, T, Ubs)

@ Substitute the transition density by the heat kernel expansion
for both the model price C and the Black-Scholes price Cps

@ Expand in terms of T — t on both sides of the resulting
equation

@ Further expand on Black-Scholes side the implied volatility
Obs(K, T) & bso + 0bs 1 (T — t) + 0bs o T — t)?

@ Match the corresponding coefficients



One expansion, Two approaches
°

Two approaches

@ Directly substitute the transition density by heat kernel
expansion to call price. Use Laplace asymptotic formula to
approximate the resulting integral.

@ Rewrite call price as intrinsic value 4 time value. Further
rewrite time value as an integral of transition density over
time, i.e., the Carr-Jarrow formula:

T
C(s,t,K, T)=(s— K)" —i—/ K20%(K, u)p(s, t; K, u)du

t
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Laplace asymptotic formula

Asymptotic expansion of the integral as 7 — 0T

[ e e e ¢ ([qsff/((xx**))ﬁH

Assumptions:
o f is identically zero when 0 < x < x*.

@ ¢ is increasing in [x*, 00).
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Laplace asymptotic for call price

Let 7 =T —t.

C(s,t,K,T):/ (s — K)"p(t,s; T,s')ds'
0

d2(5,s/ ,t)
2T

———— Hi(t,s,s)Tkds'

7 Z k(L5

V2T S U(S , T) =0

= G Gu(t,s, T,s')ds' - ¥
\V2TT Z/

¢ 6T - R
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Laplace asymptotic for call price

Assume s < K.

SSt

Gk(t,s, T,s')ds'

\/ﬁ /
- \/% [(dfm i ((df;P) ] |

o d=4d(s,K,t), d' = 99(s,K,t), and d" = ?C;(sKt)

° G = Gek(t.s. T.K) = ¥56em)
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Laplace asymptotic for call price
Laplace asymptotic for model price:
3
2 G §(K)Y | Gi(K)
C(S,t,K,T)N /7271'6 27 |:(dd/)2+{<(dd/)3 +(dd/)2 T .

o d=d(s,K,t), d' = 99(s,K,t), and d" = ?‘;(sKt)

8G H b 7K
o G| = 9C(t,5,T,K) = Kg((f;j))

Laplace asymptotic for Black-Scholes: k = log %

k 2
Ke ™ - o3 72 1 3
Cps(s, t, K, T, ops) ~ \/e% e 27bsT Jb;;— [1 — ( + k2> 0,2357'}
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Match the coefficients

Let ops = Ops0 + Obs 1T + Ubs,27'2 4+ --- and set
_2[ G} G{(K)\' = Gi(K)
© [(dd/)z i { ((dd')3 T a2 7

K2 3
552 4 KU 1 3
= e 2 bs 7k2eb§ |:1 — (8 + k2> 0'[2357':|

. 2 k log K—log s
e Exponential term: d2 = & = Opsg = = = £ T08S
P UES,O bs,0 d d(vart)

@ Zeroth order term:
k“ops,1

G! o3 KO’?) 0 k 4
@ =¢ ™ % = 01T g log Kk(d@)?
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Time value

Recall

-
C(s, t,K, T)=(s— K)T +/ K2c?(K, u)p(s, t; K, u)du
t

G K ﬂ

+Z/ N e

Moreover, denote d = d(s, K, t),

u)(u — t)<du - Hi(t, s, K)

T o2 1
/ e 0 0g(K,u)(u—t)<2du
t

~ /T e T [o(K, £) + oo (K, £)(u — D)](u — )< S du
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Expansion for call price

Let ®y(d,7) = [y u* 3o % du.
C(s t, K, T)—(s— K)"
~ {KO’(K t)q)o(d T)Ho(t S, K)

2f
+K[o:(K, t)Ho(t, s, K) + o(K, t)Hi(t, s, K)]|P1(d, )}

Moreover, on Black-Scholes side,

Cos(s, t, K, T) — (s — K)©

vsK o3
Do (dps, ) — ~22D1(dps, T
2\/% Op 0( b. 7') 3 1( b. )

~
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Auxiliary expansion and matching

Expanding the ®;'s:

s [ 1 _d
e Oy(d,7) ~ 272 [d2 3d4] e o7
2 2 d2 2 2 2
e ®i(d,7) = §T%e_g7 - ?Cbo(d T) ~ ;22 e 5
Matching
_dskn [ KoHg KoiHy + KoHy  3KoHp
e 2T d2 d2 — d4 T

R (5K 1) 0':;
= € 27 \/SK Ubsq)O(dbs;T)_ 85¢1(db5,7')
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Asymptotic expansion once again

Obs = Ops0 + O'bs,l(T — t) + O’bsgz(T — t)2 + O(T — t)3.
K d
ds. K.0) = [, &éa

Ho(s, K. 1) = /22ty exp | 1€ 40 gy

"0 gk )
k dHov Ko (K, t
® Tbs1= 13 log O\C\;s(j) , where k = log K — log s.

@ 0ps2? Too complicated to reproduce here.



One expansion, Two approaches
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Henry-Labordere's approximation

Henry-Labordeére also presents a heat kernel expansion based
approximation to implied volatility in equation (5.40) on page 140
of his book [4]:

7os(K. T) oK) {1+ 5 g o0(K)? + Q8 + 3 65 |}

318
1)
with )
c(r [y 1 ()
A= [cm‘z(cm)]
and

) L Oco(f,t)
G(f) =20, log C(f) = 2= o=~

where C(f) = f o(f, t) in our notation, f,, = (So + K)/2 and the
term oo(K) is the BBF approximation from [1].



How well do these approximations work?

We consider the following explicit local volatility models:

@ The square-root CEV model:
dS. = e Mo /S, dW,
@ The quadratic model:
dS; = e Mo {1 F(Se—1) + %(st - 1)2} dW,

@ Parameters are: 0 = 0.2, ¢ = —0.5 and 7 = 0.1. In each case
50 =land T =1.

@ A\ = 0 gives a time-homogeneous local volatility surface and
A =1 a time-inhomogeneous one.

@ We compare implied volatilities from the approximations and
the closed-form solution.
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Time-homogeneous Square Root CEV
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Note that all errors are tiny!
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Time-homogeneous Quadratic Model
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Time-inhomogeneous Square Root CEV
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Time-inhomogeneous Quadratic Model
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Summary

@ Small-time expansions are useful for generating closed-form
expressions for implied volatility from simple models.

@ Direct substitute approach is easier for generalization to
higher dimensions, e.g., stochastic volatility models.

log K — log s

Tbs d/\/](S7 V)
where dp(s, v) is the “distance to the money”, i.e., shortest
geodesic distance from the spot (s, v) to the line {s = K} in
the price-volatility plane.
e Application: Short time implied vol in delta is flat!
(Joint work with Carr and Lee).
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Summary |

@ Time value approach is easier for getting higher order terms.

o Refinement of oy (work in progress with Gatheral):

VT —t /T
Obs ™~ |77 7 -
|log K —logs| \ J;

where the integral is along the “most I|ke|y path” s(7).
o If we take the “I|ke|y path” as s(7) = ¢f (T‘Pf ), where

oi(x) = fsx 3(5 5y then BBF is recovered.

-1

2
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