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[Model and basic idea]

We suppose that a log price process Z satisfies

dZt =
{
rt −

1
2
ϕ(Xt)2

}
dt + ϕ(Xt)

[
ρ(Xt)dW1

t +

√
1 − ρ(Xt)2dW2

t

]
dXt = b(Xt)dt + c(Xt)dW1

t ,

(1)

where

a) (W1,W2); 2-dimensional standard BM,
b) r = {rt}; interest rate, deterministic,
c) b, c, ρ, ϕ; Borel functions.

The price P[ f ] of the European option with payoff function f ◦ log and
maturity T is given by

P[ f ] = DE[ f (ZT)], D = exp
−∫ T

0
rtdt
 .
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[Model and basic idea]

• Empirical studies show ρ appears “negative” and X appears “ergodic”.

• Explicit expression of the price is not available in general,

• while fast calibration and pricing are necessary in practice.

• An accurate approximation is useful and various asymptotic expansion
methods have been proposed.

• Our purpose here is to present a new approximation formula which ex-
tends the so-called fast mean reverting singular perturbation formula,
and to prove its validity.
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[Model and basic idea]

Fix ε > 0. By changing time scale s = ε−2t, we have that

ZT = Z0 + ε
2
∫ T/ε2

0

{
r̂s −

1
2
ϕ(X̂s)2

}
ds

+ ε

∫ T/ε2

0
ϕ(X̂s)

[
ρ(X̂s)dŴ1

s +

√
1 − ρ(X̂s)2dŴ2

s

]
dX̂s = ε

2b(X̂s)ds + εc(X̂s)dŴ1
s ,

where (Ŵ1
s , Ŵ

2
s ) = (ε−1Wε2s, ε

−1Wε2s), which is also an 2-dim standard BM.

If b and c are sufficiently “large”, then the law of X̂ is “nondegenerate” even
if ε > 0 is small.
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[Model and basic idea]

If in addition X̂ is ergodic, or equivalently X is ergodic, then

ε2
∫ T/ε2

0
ϕ(X̂t)2dt ≈ Π[ϕ2]T, ε

∫ T/ε2

0
ϕ(X̂t)dW̌t ≈ N(0,Π[ϕ2]T),

for small ε > 0, by martingale CLT, where Π is the ergodic distribution of X.

As a result,

DE[ f (ZT)] ≈ DE[ f (Z0 − log(D) − Σ/2 +
√
ΣN)], D = exp

−∫ T

0
rsds
 ,

where N ∼ N(0, 1), Σ = Π[ϕ2]T. The right-hand expectation is the Black-
Scholes price with volatility Π[ϕ2]1/2.

A correction term which improves this Black-Scholes approximation ?
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[Model and basic idea]

Our main result is an error estimate for the approximation

DE[ f (ZT)] ≈ DE[(1 + p(N)) f (Z0 − log(D) − Σ/2 +
√
ΣN)] (2)

for every bounded Borel function f , where N ∼ N(0, 1), Σ = Π[ϕ2]T and

D = exp
−∫ T

0
rsds
 ,

p(z) = α
{

1 − z2 +
1√
Σ

(z3 − 3z)
}
,

α = −
∫ ∞
−∞

∫ x

−∞

 ϕ(v)2

Π[ϕ2]
− 1
Π(dv)

ϕ(x)ρ(x)
c(x)

dx.

(3)

Here is an additional degree of freedom to capture the volatility skew.
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[Singular perturbation expansion]

Fouque et al. (2000):

dZt =
{
rt −

1
2
ϕ(Xt)2

}
dt + ϕ(Xt)

[
ρ(Xt)dW1

t +

√
1 − ρ(Xt)2dW2

t

]
dXt = η

−2b(Xt)dt + η−1c(Xt)dW1
t ,

with b(x) = a(b − x) + ηΛ(x), c(x) ≡ c and ρ(x) ≡ ρ.

Taylor expanding the price P[ f ] = DE[ f (ZT)] in η around 0, they obtained

P[ f ] = P0[ f ] + ηP1[ f ] + · · ·

This is based on a singular perturbation of the PDE satisfied by P[ f ].
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[Singular perturbation expansion]

• The asymptotic expansion is around the Black-Scholes price, so an
asymptotic expansion for the Black-Scholes implied volatility follows.

• Validated so far only when coefficients and payoff are sufficiently smooth.

• Error estimates are e.g., O(η2 log η) for call/put options (Fouque et al.
2003), and O(η4/3 log η) for digital options (Fouque et al. 2005).

• Conlon and Sullivan (2005), Khasminskii and Yin (2005).

• We take a probabilistic approach, without using the artificial variable η.
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[Edgeworth expansion (for IID)]

The Edgeworth expansion is a refinement of CLT, and is a rearrangement
of the Gram-Charlier expansion.

Let Zn = n−1/2∑n
j=1 X j with a standardized IID sequence X j. If, e.g.,

• E[X4
1] < ∞, and

• lim sup|u|→∞ |E[exp{iuX1}]| = 0,

then, uniformly in z ∈ R,

P[Zn ≤ z] = Φ(z) +
E[X3

1]

6
√

n
(1 − z2)φ(z) +O(n−1).
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[Edgeworth expansion for ergodic diffusions]

Fukasawa (2008): we use the fact that

{Xt}τ j≤t≤τ j+1
, τ j+1 = inf

t > τ j; Xt = x and sup
τ j≤s≤t

Xs ≥ y


j = 1, 2, . . . are IID, where x < y are fixed and τ0 = 0.

In particular,∫ T

0
f (Xt)dt ≈

NT∑
j=0

F j, F j =

∫ τ j+1

τ j

f (Xt)dt, NT = {max n; τn ≤ T}.

Since NT is random so affects the first-order expansion, a technique for
dealing with the joint distribution (F j, τ j+1 − τ j) is required.

Other approaches: Yoshida (1997), Kusuoka and Yoshida (2000).
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[Main theorem]

Define the scale function s : R → R and the normalized speed measure
density π : R→ R as

s(x) =
∫ x

0
exp
{
−2
∫ v

0

b(w)
c(w)2dw

}
dv, π(x) =

1
ε2s′(x)c2(x)

(4)

with

ε2 =

∫
dx

s′(x)c2(x)
. (5)

Note that LXs = 0. It is well-known that the stochastic differential equation
for X in (1) has a unique weak solution which is ergodic if ε < ∞ and
s(R) = R. The ergodic distribution Π of X is given by Π(dx) = π(x)dx.

Notice that X is completely characterized by (π, s, ε). In fact, we can recover
b and c by 1/c2 = ε2s′π and b = −c2s′′/2s′.
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Suppose that ϕ is locally bounded on R and that there exists a non-empty
open set U ⊂ R such that on U, ϕ and ρ are continuously differentiable,
(1 − ρ2)ϕ2 > 0 and |ϕ′| > 0.

For given γ = (γ+, γ−) ∈ [0,∞)2 and δ ∈ (0, 1), denote by C(γ, δ) the set of
the triplets θ = (π, s, ε) satisfying the following conditions:

• π is a locally bounded probability density function on R such that 1/π
is also locally bounded on R,

• s is a bijection from R to R such that s′ exists and is a positive abso-
lutely continuous function,

• ε is a positive finite constant, and...
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• It holds that

(1 + ϕ(x)2)π(x)s′(y) ≤ exp{− log(δ) + γ+x − (4γ+ + δ)(x − y)}
for all x ≥ y ≥ 0 and

(1 + ϕ(x)2)π(x)s′(y) ≤ exp{− log(δ) − γ−x + (4γ− + δ)(x − y)}
for all x ≤ y ≤ 0,

• There exist x ∈ U and a ∈ [δ, 1/δ] such that |x| ≤ 1/δ, [x − a, x + a] ⊂ U,
π is absolutely continuous on [x − a, x + a] and it holds

sup
y∈[x−a,x+a]

∣∣∣∣∣∣∣
√πs′ϕρ

′ (y)

∣∣∣∣∣∣∣ ∨ s′(y) ∨ π(y) ∨ 1
s′(y)

∨ 1
π(y)

≤ 1/δ.

Notice that if (π, s, ε0) ∈ C(γ, δ), then (π, s, ε) ∈ C(γ, δ) for all ε > 0.
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Given θ ∈ C(γ, δ), we write πθ, sθ, εθ, bθ, cθ,Zθ for the elements of θ =
(π, s, ε), the corresponding coefficients b, c of the stochastic differential
equations, and the log price process Z defined as (1) respectively.

Theorem: Fix γ = (γ+, γ−) ∈ [0,∞)2 and δ ∈ (0, 1). Denote by Bδ the set
of the Borel functions bounded by 1/δ. Then,

sup
f∈Bδ,θ∈C(γ,δ)

ε−2
θ

∣∣∣E[ f (ZθT)] − E[(1 + pθ(N)) f (Z0 − log(D) − Σθ/2 +
√
ΣθN)]

∣∣∣
is finite, where N ∼ N(0, 1), Σθ = Πθ[ϕ2]T, Πθ(dx) = πθ(x)dx and

pθ(z) = αθ

1 − z2 +
1√
Σθ

(z3 − 3z)

 ,
αθ = −

∫ ∞
−∞

∫ x

−∞

 ϕ(v)2

Πθ[ϕ2]
− 1
Πθ(dv)

ϕ(x)ρ(x)
cθ(x)

dx.

(6)
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Note that

• if θ ∈ C(γ, δ), then (πη, sη, εη) associated with the drift coefficient bη =
bθ/η2 and the diffusion coefficient cη = cθ/η is also an element of
C(γ, δ) for any η > 0.

• This is because πη = πθ and sη = sθ.

• On the other hand, εη = ηεθ,

so that our main theorem implies, with a slight abuse of notation,

E[ f (ZηT)] = E[(1 + pη(N)) f (Z0 − log(D) − Ση/2 +
√
ΣηN)] +O(η2) (7)

as η→ 0.
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