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[Model and basic idea]

We suppose that a log price process Z satisfies

42, = {ri = 39042} dt + p(X) [p(X»dw; v \1- p<xt>2dwtz]

dX; = b(Xp)dt + o(Xp)dW,,
where

a) (W!, W2); 2-dimensional standard BM,
b) r = {r}}; interest rate, deterministic,
C) b,c, p, p; Borel functions.

The price P[f] of the European option with payoff function f o log and
maturity T is given by

T
PIfl= DE[f(Zp)], D= exp {— fo rtdt}.



[Model and basic idea]
e Empirical studies show p appears “negative” and X appears “ergodic”.
e Explicit expression of the price is not available in general,
e while fast calibration and pricing are necessary in practice.

e An accurate approximation is useful and various asymptotic expansion
methods have been proposed.

e Our purpose here is to present a new approximation formula which ex-
tends the so-called fast mean reverting singular perturbation formula,
and to prove its validity.



[Model and basic idea]
Fix € > 0. By changing time scale s = e ¢, we have that
e
Zr=2Zo+ € f {?s - E<p(xs)2} ds
0

T/e? A R R R A
iy fo P(Xs) [P(Xs)dwsl + \/ 1 - p(Xs)2d W2 ]
dXs = €2b(Xs)ds + ec(Xs)dW},

where (W}, W2) = (e"1W ., e 1 W_,,), which is also an 2-dim standard BM.

If b and c are sufficiently “large”, then the law of X is “nondegenerate” even
if e > 0 is small.



[Model and basic idea]
If in addition X is ergodic, or equivalently X is ergodic, then
2 TIe 2 2 T 2
[ et T, € [ p(pdi ~ MO TG,
for small € > 0, by martingale CLT, where IT is the ergodic distribution of X.
As a result,

T
DE[f(Z7)] ~ DE[f(Zg — log(D) - /2 + VEN)], D = exp {— f rsds},
0

where N ~ N(0,1), & = IT[@?]T. The right-hand expectation is the Black-
Scholes price with volatility IT[@?]1/2.

A correction term which improves this Black-Scholes approximation ?
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[Model and basic idea]

Our main result is an error estimate for the approximation

DE[f(Z7)] ~ DE[(1 + p(N))f(Zg — log(D) - £/2+ VIN)]  (2)
for every bounded Borel function f, where N ~ N(0,1), & = I[@?]T and

T
D =exp {—f rsds},
0

p(z) = a{ — %+ L\/_(z — 32)}, (3)

p(0)? _} P()p(x)
f f {H[goz] 13 11(dv) ) dx.

Here is an additional degree of freedom to capture the volatility skew.




[Singular perturbation expansion]

Fouque et al. (2000):

1
dz; = {rt - Ego(x,f)2} dt + p(Xy) [p(x,f)olwf1 + \/1 - p(Xt)detz]
dX; = n72b(Xy)dt + 7 Le(X)dW],
with b(x) = a(b — x) + nA(x), c(x) = c and p(x) = p.
Taylor expanding the price P[f] = DE[f(ZT)] in n around 0, they obtained

P[f]1=Polf]+nP1lf1+--
This is based on a singular perturbation of the PDE satisfied by P[f].



[Singular perturbation expansion]

e The asymptotic expansion is around the Black-Scholes price, so an
asymptotic expansion for the Black-Scholes implied volatility follows.

e Validated so far only when coefficients and payoff are sufficiently smooth.

e Error estimates are e.g., O(n2 log 1) for call/put options (Fouque et al.
2003), and O(n*/31og 1) for digital options (Fouque et al. 2005).

e Conlon and Sullivan (2005), Khasminskii and Yin (2005).

e We take a probabilistic approach, without using the artificial variable n.
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[Edgeworth expansion (for |ID)]

The Edgeworth expansion is a refinement of CLT, and is a rearrangement
of the Gram-Charlier expansion.

Let Z,, = n~1/2 Z}Z:l X; with a standardized IID sequence X . If, e.q.,

. lE[X‘ll] < 0, and
° limsup|u|_>oo |E[expliuX4}]| =0,

then, uniformly in z € IR,

P[Z,<z] = +E[X%]1— 2 +O(n1
n < z] = D(2) 6\/ﬁ( z7)P(z) + O(n 7).
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[Edgeworth expansion for ergodic diffusions]

Fukasawa (2008): we use the fact that

{Xt}T]'StST]'+1 , Tigp =inft>1;Xp=xand sup Xs >y
]<s<t

j=1,2,... are lID, where x < y are fixed and 7y = 0.

In particular,
T Nt
; f(Xpdt = ZF], Fi= f f(Xpdt, N7 ={maxn;t, <T}.
j=0

Since Nt is random so affects the first-order expansion, a technique for
dealing with the joint distribution (Fj i1 — T]') IS required.

Other approaches: Yoshida (1997), Kusuoka and Yoshida (2000).
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[Main theorem]

Define the scale function s : R — IR and the normalized speed measure
density m: R —» R as

" o [ b(w) B 1
s(x) = I) exp{ 2 fo c(w)zdw} do, n(x) = 25 (20 (4)

2 dx
© _fs’(x)cz(x)' )

Note that £%s = 0. It is well-known that the stochastic differential equation
for X in (1) has a unique weak solution which is ergodic if € < oo and
s(R) = R. The ergodic distribution IT of X is given by Il(dx) = m(x)dx.

with

Notice that X is completely characterized by (m, s, €). In fact, we can recover
band cby 1/c? = €2’ and b = —c%s"’ /25’ .
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Suppose that ¢ is locally bounded on R and that there exists a non-empty
open set U c R such that on U, ¢ and p are continuously differentiable,
(1 - p?)p? > 0and |¢’| > 0.

For given y = (y4+,7-) € [0,00)? and & € (0,1), denote by C(y, ) the set of
the triplets 6 = (m, s, €) satisfying the following conditions:

e 77 is a locally bounded probability density function on R such that 1/x
is also locally bounded on R,

e s is a bijection from R to R such that s’ exists and is a positive abso-
lutely continuous function,

e c is a positive finite constant, and...
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e |t holds that

(1 + @(x)*)m(x)s’ (y) < exp{—1log(6) + y+x — (4y+ + O)(x — v))
forallx >y > 0and

(1 + p()*)m(x)s’(y) < exp{—1og(d) — y—x + (4y— + &)(x — y)}

forallx <y <0,

e Thereexistxe Uanda € [5,1/6] suchthat |x| <1/6, [x —a,x+a] C U,
7t IS absolutely continuous on [x —a,x + a] and it holds

(\/S—g,qop) y)

Notice that if (t, s, eg) € C(y, 0), then (mr,s,€) € C(y, 6) for all € > 0.

vS’(y)\/n(y)\/S,1 % ! <1/6.

P (v) 7n(y)

y€[x—a,x+a]
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Given 0 € C(y,0), we write mg,sg,€g,bg,co, Z¥ for the elements of 6 =
(1t,s,€), the corresponding coefficients b, ¢ of the stochastic differential
equations, and the log price process Z defined as (1) respectively.

Theorem: Fixy = (y4,7-) € [0,00)% and 6 € (0,1). Denote by B; the set
of the Borel functions bounded by 1/6. Then,

sup €5 |ELF(ZD] - El(1 + pg(N)) f(Zo — log(D) — Zg/2 + yZgN)]|
f€Bs,0€C(y,0)

is finite, where N ~ N(0,1), Zg = IIg[@?]T, Tlg(dx) = mg(x)dx and

_ 2.1 5
p@(z)—ag{l z +\/Z_@(Z 32)},

(R ) } P(¥)p(x)
o= [ [ i1 oteo "5 e
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Note that

o if 0 € C(y,0), then (my, sy, €ny) associated with the drift coefficient by, =
19(9/172 and the diffusion coefficient ¢, = cg/n is also an element of
C(y, 6) for any n > 0.

e This is because 1, = g and s, = sg.
e On the other hand, e, = neg,

so that our main theorem implies, with a slight abuse of notation,

ELF(Z)] = EL(L+ py(N))f(Zg ~ log(D) = Z4/2+ \[ZN)1+ OGP (7)
asn — 0.
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