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Consider a market with a canonical reference asset and some
derivatives based on it.

If we model the canonical reference asset in detail under the
martingale measure then the prices of the derivatives are given by
conditional expectation.

If the derivatives are traded liquidly then the model prices may
contradict the prices observed on the real market.

First way out: Calibration

2nd way out: Model the derivatives directly

Some references: Schönbucher (1999), Jacod & Protter (2006),
Schweizer & Wissel (2008, 2009), Carmona (2007), Carmona &
Nadtochiy (2009)
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The philosophy behind HJM
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Summary of the situation

There is a cononical reference asset

There are some derivtaives based on it

We want to model the derivatives

It is hard to model the derivatives direclty, because they have
complicated dependencies on each other

Find a reparametrisation to get rid of the complicated dependencies
(codebook)

Model the codebook-process directly, such that all the derivatives are
martingales under the martingale measure. (no arbitrage condition)

How does the canonical reference asset look like? (consistency
condition)
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How to find a good reparemtrisation? – the simple models

Choose a class of models (simple models) such that
I The simple models do not allow for arbitrage.
I The class has a simple parameter space C
I There is a (simple) one to one function Φ which mapes a given

parameter and a given price of the underlying to the price of the
derivative.

Forget about the simple models but keep the parametrisation Φ and
use the parameter space C as the codebook space.
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Example I: Heath et. al (1992)

Canonical reference asset: Money market account

dK (t) = K (t)r(t)dt

Liquid derivatives: Bonds B(t,T ) with B(T ,T ) = 1.

Simple model: dK (t) = K (t)r(t)dt with deterministic short rate r(t)

I In this setup: B(t,T ) = exp(−
∫ T

t
r(s)ds)

I Conversely: r(T ) = −∂T log(B(t,T ))

This inspires the codebook f (t,T ) = −∂T log(B(t,T ))

Model the dynamics df (t,T ) = α(t,T )dt + β(t,T )dW (t)

Drift condition: α(t,T ) = β(t,T )
∫ T
0 β(t, s)ds

Consistency condition: r(t) = f (t, t)
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Example II: Carmona & Nadtochiy (2009)

Canonical reference asset: Stock S(t)

Liquid derivatives: European Calls C (t,T ,K ) with maturity T and
strike K .

Simple model: Purely discontinuous time-inhomogenous exponential
Lévy processes

I In this setup: C (t,T ,K ) can be obtained from the Lévy density K (t, u)
via a function Φ.

I Conversely: K (t, u) can be obtained from the call option prices.

This inspires the codebook X (t,T , u) = Φ−1(C (t,T ,K ))

Model the dynamics X (t,T , u) = α(t,T , u)dt + β(t,T , u)dW (t)

Drift condition: α(t,T ,K ) = Dβ(t,T ,K ) where D is an fourth order
integro differential operator

Consistency condition: K (t, u) = X (t, t, u), where K is the density of
the compensator of the jump measure of log(S).
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Setting Lévy in motion.
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Canonical reference asset: Stock S(t) = exp(X (t)) with return X .

Liquid derivatives: Calls C (t,T ,K ) with maturity T and strike K .
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Simple model: exponential time-inhomogenous Lévy processes

E (e iuXt ) = exp

(∫ t

0
ψX (s, u)ds

)
where ψX (s, u) is given by a generalised Lévy-Khintchine formula.

I In this setup: C (t,T ,K ) can be obtained by Fourier technics from ψX

by a formula Φ−1 which can be found in (Belomestny.Reiss 99)

O(t,T , x) = F

u →
1− exp

(∫ t

0
ψX (s, u)ds

)
u2 + iu

 (x),

C (t,T ,K ) = (S(t)− K )+ + KO
(

t,T , log

(
K

S(t)

))
.

I Conversely: ψX (T , u) can be obtained from the call option prices

O(t,T , x) := e−(x+X (t))C
(
t,T , ex+X (t)

)
− (e−x − 1)+

ψX (T , u) = ∂T log
(
1− (u2 + iu)F{x → O(t,T , x)}(u)

)
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This inspires the codebook Ψ(t,T , u) := Φ−1(K 7→ C (t,T ,K ))(u)

Model the dynamics Ψ(t,T , u) = α(t,T , u)dt + β(t,T , u)dL(t)

Drift condition: α(t,T , u) = ∂Tψ
L
(∫ T

t β(t, r , u)dr
)

Consistency condition: ψX (t, u) = Ψ(t, t, u)
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An example
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A deterministic example

We consider the situation: S(t) = exp(X (t))

dΨ(t,T , u) = α(t,T , u)dt + β(t,T , u)dL(t) for an increasing Lévy
process L

β(t,T , u) = u2−iu
2 eλ(T−t) for some λ ∈ R+

The conditions imply

dX (t) = dM(t)− v(t)dt +
√

v(t)dW (t)

dv(t) = −λv(t)dt + dL(t)

for some time inhomogeneous Lévy process M.
It is some kind of Barndorff-Nielsen & Shephard (2001) stochastic
volatility model.
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Thank you for your attention.
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