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Introduction
Introduction

@ Recent years, the long-dated (maturity > 1 year) foreign exchange
(FX) option's market has grown considerably

o Vanilla options (European Call and Put)
o Exotic options (barriers,...)
o Hybrid options (PRDC swaps)
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Introduction
Introduction

@ A suitable pricing model for long-dated FX options has to take into
account the risks linked to:

e domestic and foreign interest rates

@ by using stochastic processes for both domestic and foreign interest
rates

dra(t) = [0a(t) — ca(t)ra(t)]dt + oa(t)dW™ (t),
dre(t) = [0r(t) — ar(t)re(t)]dt + or(t)dWs (1)
o the volatility of the spot FX rate (Smile/Skew effect)
@ by using a local volatility o(t, S(t)) for the FX spot
dS(t) = (ra(t) — re(£))S(t)dt + o (t, S(£))S(£)dWs ™" (),
@ by using a stochastic volatility v(t) for the FX spot
ds(t) = (ra(t) — I'f(t))s(t)dt + /(1) S(t)dWERN (¢),
du(t) = k(0 — v(t))dt + £/ v(t) dWDR"’ t)
e and/or jump
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Introduction

Introduction

@ Stochastic volatility models with stochastic interest rates:

@ R. Ahlip, Foreign exchange options under stochastic volatility and stochastic interest
rates, International Journal of Theoretical and Applied Finance (IJTAF), vol. 11,
issue 03, pages 277-294, (2008).

ﬁ J. Andreasen, Closed form pricing of FX options under stochastic rates and volatility,
Global Derivatives Conference, ICBI, (May 2006).

A. Antonov, M. Arneguy, and N. Audet, Markovian projection to a displaced
volatility Heston model, Available at http://ssrn.com/abstract=1106223, (2008).

A. van Haastrecht, R. Lord, A. Pelsser, and D. Schrager, Pricing long-maturity
equity and fx derivatives with stochastic interest rates and stochastic volatility,
Available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1125590, (2008).

(=) ) [=)

A. van Haastrecht and A. Pelsser, Generic Pricing of FX, Inflation and Stock
Options Under Stochastic Interest Rates and Stochastic Volatility, Available at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1197262, (February 2009).

@ Local volatility models with stochastic interest rates:

ﬁ V. Piterbarg, Smiling hybrids, Risk, 66-71, (May 2006).
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Introduction

Introduction

@ Advantages of working with a local volatility model:

o the local volatility o(t, S(t)) is a deterministic function of both the FX
spot and time.

o It avoids the problem of working in incomplete markets in comparison

with stochastic volatility models and is therefore more appropriate for
hedging strategies

e has the advantage to be calibrated on the complete implied volatility
surface,

@ local volatility models usually capture more precisely the surface of
implied volatilities than stochastic volatility models

Gregory Rayee (ULB) Bachelier Congress 2010 Toronto, 22-26 june 2010 6 /37



Introduction

The model

@ The calibration of a model is usually done on the vanilla options
market
— local and stochastic volatility models (well calibrated) return the
same price for these options.

@ But calibrating a model to the vanilla market is by no mean a
guarantee that all type of options will be priced correctly
o example: We have compared short-dated barrier option market prices
with the corresponding prices derived from either a Dupire local

volatility or a Heston stochastic volatility model both calibrated on the
vanilla smile/skew.
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Introduction

Introduction

e A FX market characterized by a mild skew (USDCHF) exhibits mainly
a stochastic volatility behavior,

@ A FX market characterized by a dominantly skewed implied volatility
(USDJPY) exhibit a stronger local volatility component.
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Introduction
Introduction

@ The market dynamics could be better approximated by a hybrid
volatility model that contains both stochastic volatility dynamics and
local volatility ones.

@ example:

dS(t) = (rq(t) — re(£))S(t)dt + aroca(t, S()) v/ v(t)S(t)dWERN (),
dry(t) = [04(t) — ag(t)rg(t)]dt + ad(t)de’R"’(t),

dre(t) = [0(t) — ar(t)re(t)]dt + o (£)dW RN (¢),

du(t) = k(0 — v(t))dt + £/ v(t)dWPRN(¢).

@ The local volatility function o oc2(t, S(t)) can be calibrated from the local volatility that
we have in a pure local volatility model!
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The model

The three-factor model with local volatility

@ The spot FX rate S is governed by the following dynamics
dS(t) = (ra(t) — re())S()dt + o (t, S(£))S(£)dWE N (1), (1)

@ domestic and foreign interest rates, ry and r¢ follow a Hull-White one factor
Gaussian model defined by the Ornstein-Uhlenbeck processes

{ drg(t) = [0a(t) — cq(t)ra(t)]dt + o4(£)dWP™ (2), 2
dre(t) = [0¢(t) — ar(t)re(t) — prsor(t)o(t, S(2)ldt + or ()dWP N (2),  (3)

@ 04(t), ad(t),oq(t),0r(t), ar(t), or(t) are deterministic functions of time.

@ Equations (1), (2) and (3) are expressed in the domestic risk-neutral measure
(DRN).

o (WDORN(t), WPRN(t), WPRN(t)) is a Brownian motion under the domestic
risk-neutral measure Qg with the correlation matrix

1 Psd  Psf
Psd 1 Pdf | -
PSf  Pdf 1
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The local volatility function first approach

The local volatility derivation : first approach
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The local volatility function first approach

The local volatility derivation : first approach

@ Consider the forward call price C(K, t) of strike K and maturity t, defined (under the
t-forward measure Q;) by

C(K,t)

C(K,t) = Pu(00)

— EQ[(S(t) — K)*] :///Km(s(t) — KYE (S, ra, 1y, £)dSdrydry.

@ Differentiating it with respect to the maturity t leads to

+o0
8C(K ) /// (S(t) - ()W(Sdrtd 1) Selrydry

@ we have shown that the t-forward probability density ¢ satisfies the following
forward PDE:

D ey oty op — O = HSOOE]  DlOs(8) = ag(®) ro() ]
ot Ox Ay
_AMOH(e) — ar(e) re(0)0e] | 1 Do S()S ()or] | 1 Ur3(0se] | 1 Do (e)er]
oz 2 ox2? 2 dy? 2 822
L Pl SE)SOos(psatrl | Plote OISO psrér] | PloalorOpartel
Oxdy Ox0z Oydz
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The local volatility function first approach

The local volatility derivation : first approach

@ Integrating by parts several times we get

dC(K, 1)

e = £(0,t)C(K, f)+///K+oo[rd(f)K—ff(t)s(t)]¢F(57 rd, r, t)dSdrydrs

+%(o(t, K)K)z/ / or(K, ry, re, t)drgdre

= £4(0,)C(K, t) + EX[(ra(t)K — re(t)S(£)1{s(> k7 ]
1 92C(K, t)
+§(U(t, K)K)zw

@ This leads to the following expression for the local volatility surface in terms of the
forward call prices C(K, t)

ek _ £2(0, ) C(K, t) — E®[(rg(t)K — re(t) S() s>k ]

2 ot
o (t,K) = -
(t,K) 12 92C(K 1)
2 oK?
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first approach

first approach

The local volatility function

The local volatility derivation

@ The (partial) derivatives of the forward call price with respect to the maturity can be

rewritten as

c(k,
el ack,) 1 _
= +fd(07t)c(t7 K)7

aC(K, 1) _

ot a ot At Py(0,t)
- Cc(K,
92C(t, K) PlEES 1 (s K)
AK? AK2  P4(0,t) OK2

@ Substituting these expressions into the last equation, we obtain the expression of the local

volatility o2(t, K) in terms of call prices C(K, t)

QUG Py(0, t)EX[(rg(£)K — re(t) S(£))1(s(e)>k} |
12 22C(K 1) ’
2 OK?

a2(t,K) =

Toronto, 22-26 june 2010 14 / 37

Bachelier Congress 2010

Gregory Rayee (ULB)



The local volatility function second approach

The local volatility derivation : second approach
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The local volatility function second approach

The local volatility derivation : second approach

@ Applying Tanaka's formula to the convex but non-differentiable function
e~ Jo ra(s)ds (5(t) — K)* leads to

e Jo D% (1) — K)T = (S(0) — K)" ~ / ra(w)e I8 SO (S ) - K)*d
0

t v 1 t u
+/0 e~ fo rd(s)dsl{s(u)>K}d5u + 5/0 e~ fo fd(s)ddeuK(S)

where LX(S) is the local time of S defined by

1
LSy = L'I'SE/O Lk ks q(S(s))d < 5,5 > .

@ Using dS(t) = (ra(t) — re(£))S(t)dt + o(t, S(£))S(t)dWERN(¢), taking the domestic risk
neutral expectation of each side and finally differentiating,
dC(K, t) = EQ[e™ I6 a9 (Kry () — re(£)S(£))11s(0)> kIt

4= lim EQd[lllK,KH](S(t))e’ Jo ra©)ds 52+ 5(1)) S2(t)]d.
€

1
2 €l0
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The local volatility function second approach

The local volatility derivation : second approach

@ Using conditional expectation properties, the last term can be rewritten as follows

im LEQu (1 i1 (S(0))e Ji 999552 (1, 5(1))82(1)]
€ €

= lim ZEQE e i W% | S(0)] Ly, (S()o2(1, (1)) S(0)]

= EQ[e™ Jo ()% | S(t) = K]pa(K, 1) o?(t. K) K>

82C(K,t)
OK2
where py(K, t) = [ [ ¢4(K, rqg, rr, t) is the domestic risk neutral density of S(t) in K.

@ This leads to the local volatility expression where the expectation is expressed under the
domestic risk neutral measure Qg

9CUKY) _ EQule Jo (% (Kry(t) — rr(£)S(£)) 150> k)]

12 82C
2K K2

a2(t,K) = (5)
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The local volatility function second approach

The local volatility derivation : second approach

e~ Jo a®dsp (¢ T)
P4(0,T)
expression with the expectation expressed into the t-forward measure Q:

@ Making the well known change of measure : ZQTZ = , you get the

2EGED — Py(0, HEX[(Kra(t) — r()S() 1 (s(0>)]

142 92C
2K IK?

o2(t,K) =
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Calibration
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Calibration Introduction

Calibration

@ Before pricing any derivatives with a model, it is usual to calibrate it
on the vanilla market,

o determine all parameters present in the different stochastic processes
which define the model in such a way that all European option prices
derived in the model are as consistent as possible with the
corresponding market ones.
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Calibration Introduction

Calibration

@ The calibration procedure for the three-factor model with local
volatility can be decomposed in three steps:

© Parameters present in the Hull-White one-factor dynamics for the
domestic and foreign interest rates, 04(t), aq(t), oq4(t), O¢(t), ar(t),
o¢(t), are chosen to match European swaption / cap-floors values in
their respective currencies.

@ The three correlation coefficients of the model, psq, pss and pgr are
usually estimated from historical data.

© After these two steps, the calibration problem consists in finding the
local volatility function of the spot FX rate which is consistent with an
implied volatility surface.
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Calibration Introduction

Calibration

, BEUE _ Py(0, t)EX[(Kry(t) — rr(£)S(£))L(s(0)> k]
o°(t,K) = T2 dPC .
2K oz

Difficult because of EQ¢[(Kry(t) — re(t)S(t) 1 s>kl
@ there exists no closed form solution

@ it is not directly related to European call prices or other liquid products.

@ |Its calculation can obviously be done by using numerical methods but you have to solve
(numerically) a three-dimensional PDE:

LB 00 o s O = OS] | AL0) — a0 ra(e)or]
ot Ix oy

L Ol00) — ar(®) r(0)0r] 127 SN (0] 1 0Plo(er] 1 OloR(e)er]
oz 2 ox? 2 dy? 2 922

| Plo(e SENSOe(pstel _ Lot SIS OorBpsrr) _ FloaOor®pusel o
Oxdy Ox0z Oydz '
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Calibration Introduction

First method : by adjusting the Dupire formula
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Calibration first method

Calibration : Comparison between local volatility with

and without stochastic interest rates

@ In a deterministic interest rates framework, the local volatility function o17(t, K) is given
by the well-known Dupire formula:

OC(K aC(K,
02, (6. K) — G+ K(F(0,1) = (0, 1) OG0 + (0, )C(K, 1)
AN 1 Lk2 22C(K, t)
K2

@ If we consider the three-factor model with stochastic interest rates, the local volatility
function is given by

9CUCD  py(0, t)EQ[(Kry(t) — re(£)S(£)) 1500 ol
1 1k2 82(_‘(K t)

0—?2:f(t’ K) =

@ We can derive the following interesting relation between the simple Dupire formula and its
extension

KP4(0, ){Cov®[re(t) — rg(), 10> y] + & CovOlre (1), (S(t) — K)*]}

1k2 a2¢
oK?

2 2
o3¢(t, K) — o3¢ (t, K) =
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Calibration first method

Second method : by mimicking stochastic volatility models
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Calibration By mimicking stochastic volatility models

Calibrating the local volatility by mimicking stochastic

volatility models

@ Consider the following domestic risk neutral dynamics for the spot FX rate

dS(t) = (ra(t) — re(t)) S(t) dt+(t,1(t)) S(t) AW (t)

@ u(t) is a stochastic variable which provides the stochastic perturbation for the spot
FX rate volatility.
@ Common choices:

Q (t,v(t)) = v(t)
Q (1, (1)) = exp(y/v(1))
© (£, (1)) = /(D)
@ The stochastic variable v(t) is generally modelled by
@ a Cox-Ingersoll-Ross (CIR) process as for example the Heston stochastic
volatility model:
du(t) = v(6 — v(t))dt + £/o(E)dWORY (t)

@ a Ornstein-Uhlenbeck process (OU) as for example the Schébel and Zhu
stochastic volatility model:

du(t) = k[\ — v(t)]dt + EdWPRN (1)
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Calibration By mimicking stochastic volatility models

Calibrating the local volatility by mimicking stochastic

volatility models

@ Applying Tanaka's formula to the non-differentiable function e™ Jo ra(s)ds (5(r) — K)*,
where dS(t) = (rg(t) — re(t)) S(t) dt +~(t,v(t)) S(t) dWERN(t)

dC(K, t) = E%[e I 49 (Kry(t) — re(£)S(£))1 50> kIt

*% lim £ l%l[x,m(sm)e* I8 14912 (¢, (1)) S (£)] .

Here, the last term can be rewritten as

lim e [k e+ (S(2))e ™ Jo @22 1(1))S3(¢)]
€ €

= lim %EQd[EQdW(r, v(t)e™ Jo )8 | S(6)1pk k4 (S(2))S?(1)]
= EQ[2(t,u(t))e Jo ()% | S(t) = K]pa(K, t)K>
_ B[R p(e)e” fo 90 | S(1) = K] 2C(K. ) 0

EQi[e o ra(s)ds | S(t) = K] oK? (8)
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Calibration By mimicking stochastic volatility models

Calibrating the local volatility by mimicking stochastic

volatility models

EQ[y2(t, v(t)e™ [ 4% | 5(1) = K] _ 5E — EQfe™ Jo a1 (Kry(t) — re()S(8)) 1505 k3]

EQu[e~ Jo 1a(5)%5 | 5(t) = K] 1k2 ¢

o2(t,K)

@ Therefore, if there exists a local volatility such that the one-dimensional probability
distribution of the spot FX rate with the diffusion

dS(t) = (ra(t) — re(t)) S(t) dt + o (£, S(t)) S(t) dWRV (1),
is the same as the one of the spot FX rate with dynamics
dS(t) = (ra(t) — re(t)) S(t) dt + (£, v(t)) S(t) dWERN(¢)

for every time t, then this local volatility function has to satisfy
EQ[y2(t, v(t)e” o % | 5(1) = K]

EQs[e™ Jo ()% | (1) = K]
= E%DA(6(0) | S(0) =K.

a2 (t,K) =
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Calibration By mimicking stochastic volatility models

A particular case with closed form solution

@ Consider the three-factor model with local volatility
dS(t) = (rg(t) — re(£))S(t)dt + o(t, S(£))S(£)dWE™N (2),
drg(t) = [0a(t) — agrg(t)ldt + ogdWPRN (1),
dr(t) = [0¢(t) — arre(t) — psorv(t)ldt + ordWPRY (1),
@ Calibration by mimicking a Schobel and Zhu-Hull and White stochastic volatility model
dS(t) = (ra(t) — re())S(t)dt + v(£)S(£)dWE(¢),
dry(t) = [04(t) — agrg(t)]dt + ogdWRN (1),
dr(t) = [0(t) — arre(t) — psorv(t)ldt + ordWPRV(t),
du(t) = k[\ — v(t)] dt + EdWPRN (),

@ The local volatility function is given by:

o*(T,K) ET[*(T)IS(T) = K]

= EQT[W3(T)] if we assume independence between S and v
(EQT[(T)])? + Var 9T [v(T)]
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Calibration By mimicking stochastic volatility models

A particular case with closed form solution

@ Under the T-Forward measure:

du(t) = [k(A — v(t)) — pavoaba(t, T)Eldt + & dW,F(t)

_ Pdvodba(u, T)E

v(T) = v(t)e KT8 4 /T k(A p

T
)efk(Tfu)du+/ gefk(Tft)dWVTF(u)
t

1
where by(t, T) = — (1 — e~ (7T—1))
ad

@ so that v(T) conditional on F; is normally distributed with mean and variance given
respectively by

EOT[(T)|F] = w(t)eKT=0 4 (n — ParT98y (1 o—k(T-0)
agqk

PdvId€ —(ag+k)(T—t)
_ PdvZds  q _ d
aalog + R € :

2
Var9T [u(T)|F] = 57(1 — e 2K(T 1))
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Calibration By mimicking stochastic volatility models

A particular case with closed form solution

oX(T,K) = (E9[(T)])* + VarT [v(T)]

— v —kT 7Pdu0'd£ _ o—kT PdvTdE o —(ag+k)T 2
<(t)e +0 aqgk ML -e )+ad(ad+k))(1 ¢ )>
+§(17672k7—)
2k

= (T)

0 5 10 5T 0 E3 30 E3

Figure: ¢ =20%, k = 50%, ag = 5%, v(0) = 10%, o4 = 1%, A = 20%, pg,, = 1%
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Extension

Extension : Hybrid volatility model
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Hybrid volatility model

@ Here we consider an extension of the three-factor model with local
volatility that incorporates a stochastic component to the FX spot
volatility by multiplying the local volatility with a stochastic volatility.
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Extension

Hybrid volatility model

@ Consider a hybrid volatility model where the volatility for the spot FX rate corresponds to
a local volatility o oc2(t, S(t)) multiplied by a stochastic volatility (¢, v(t)) where v(t)
is a stochastic variable,

dS(t) = (ra(t) — re(t))S(t)dt + aroca(t, S(2))y(t, v(1))S(£)dWRV (¢),
drg(t) = [04(t) — ag(t)rg(t)ldt + og(£)dWRV (1),
dre(t) = [0¢(t) — ar(t)re(t) — prsor(t)oroca(t, S()y(t, v(1)]dt + o (£)dWPRY (1),
du(t) = a(t,v(t))dt + 9(t, v(t))dWDRN(¢).
@ Consider the three-factor model where the volatility of the spot FX rate is modelled by a
local volatility denoted by o, oc1(t, S(t)),
dS(t) = (ra(t) — re(£))S(t)dt + oroca(t, S(£))S(t)dWERN (1),
dry(t) = [84(t) — g (£)ra(D)]dt + o (£)dWDRY (1),
dre(t) = [0¢(t) — ar(t)re () — prsor(t)oroc(t, S(2)]dt + o (£)dWPRV(¢).
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Extension

Hybrid volatility model

Gyongy's result

@ Consider a general n-dimensional 1t process £; of the form:

d&: = o(t, w)dW(t) + B(t, w)dt

where W(t) is a k-dimensional Wiener process on a probability space (R, F, P), § € R"*k
and 3 € R" are bounded F;-nonanticipative processes such that §67 is uniformly positive
definite.

@ This process gives rise to marginal distributions of the random variables &; for each t.

@ Gydngy then shows that there is a Markov process x(t) with the same marginal
distributions.

@ The explicit construction is given by:

dxe = o(t, x¢)dW(t) + b(t, x¢)dt

where: o(t,x) = (Bt w)sT (t,w)ler = x])?
b(t,X) = ]E[B(tv W)lgt = X]
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Hybrid volatility model

aroci(t, K)
EQd[y(t,v(t))|ra(t) = x, re(t) = y, S(t) = K]

agroca(t, K) =

where the conditional expectation is by definition given by

E[y(t, v(t))|ra(t) = x, re(t) = y, S(t) = K]
]0 (£, v(£)pa(S(t) = K, ry(t) = x, re(t) = y,v(t), t)dv
fo #a(S(t) = K, rq(t) = x, re(t) = y, v(t), t)dv
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Thank you for your attention
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