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Outline of the presentation

e Statistical inverse problems

e Correlated Hull-White formula for option pricing

e Inverse problem of integrated correlated variance



Inverse problems and ill-posedness

Let us have an unknown hidden variable x and an observed
variable y, related to x by the model function f:

y = f(z,e),

where e accounts for the measurement noise.

The inverse problem is to get information of x by measuring y
- for example to estimate the implied volatility, local volatility, or
risk-neutral price density from option prices.

Often inverse problems are ill-posed: they have no unique so-
lution and small errors in the data propagate to large errors in

X.



e traditional regularization: the ill-posed problem is replaced
by a nearby problem that is well-posed

e instead of applying traditional regularization, we recast the
inverse problem in the form of statistical inference on the
distribution of the unknown

— allows us to integrate additional prior knowledge to our
estimation process

— even if the deterministic ill-posed problem does not have
a unique solution, there always exists a probability den-
sity of the unknown, the variance of which may be large
or small



Stochastic inverse problem; Bayesian approach

X is an unknown hidden random variable; an observed random
variable Y is related to X by the model function f, so that

Y = f(X,e),

where also the noise is modelled as a random variable e.

We apply a Bayesian approach. The solution of the inverse
problem, the posterior density, is then given by

Pposterior(w | y) o Plikelyh (y | x)Pprior(iU)a

where x and y are realizations of X and Y.



Bayesian approach with hyperprior

We apply a Bayesian approach with a hyperprior, so that

Pposterior(fﬂ | y) o Plikelyh (y | QU)Pprior(fU | Q)Phyper(e)a

where @ is part of the inverse problem and will be defined by the
data.



Maximum-A-Posteriori and Conditional Mean estimates
Two common Bayesian point estimates:
Maximum-A-Posteriori (MAP)

rmap = arg max P(x | y),

- tells which value of =z maximizes the posterior distribution of
this unknown. Leads to an optimization problem.

Conditional mean (CM)

rcm = E{z | y},

- provides information of the point of mass of the posterior distri-
bution. Leads to Markov Chain Monte Carlo (MCMC) sampling
and an integration problem.



Correlated stock price and volatility processes

Model the stock price process as

dX; =1 — p2o1 X4 dW1 ¢ + poy X1 dWo 4,

where the ¢ dynamics are independent on the Brownian motion
W1 but dependent on the Brownian motion W5, and p € [—1, 1]
is the correlation between price and volatility shocks.

The integrated variance &7 is given by
1 /T
2 2
- d :
O-t T _ . /t O-S S
and the integrated correlated variance by 57, = (1 — p?)a7.
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Now log( X7/ X¢) is normally distributed conditional on
52, and &, with

X 1
E{ Iog(yf) | G5 6y =109(&) — S75,(T — 1),

X1y, - _
Val’{ |Og(yt) | O-g,bgt} = Jg,t(T — t)

where the integrated correlated variance is given by

1 — p2 (T

) P 2
o<, = o<ds
PET Tt Jy 8

and

15 5 T
& = exp —Ep /t asds—l—p/t asdWp s |.
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The correlated Hull-White price for a European call is then

HW — —
U (@ K, T of) = B{UPS (26, K, T3 5,,) | 554, 60,7 = Xi}.

(Hull-White 1987, correlated Hull-White by Willard 1996)

We assume that

uPPS = Uyl e e ~ N(0, Vary)

and ufPs is a realization of Uy trye ~ N (T, Vary), with

Uy (ut bid + ut.offer)/2,
Vary = V(ugbid — Ut,offer)

where V' is positive finite constant.
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Joint density and marginalized densities related to corre-
lated Hull-White formula
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Joint probability density and marginalization
The joint probability density of two real valued random variables
X and Y is defined as

P{X € A,Y € B} = //A _ m(x,y)dady,
X

and, assuming that such a density exists, the marginal density
of X is recovered as

w(x) Z/RW(:B,y)dy.

We estimate the joint probability distribution (52 ;, £;). When es-
timating the integrated correlated variance, we marginalize the
correlated Hull-White formula with respect to an estimate of &,
and when estimating &;, we marginalize the formula with respect

to an estimate of 75 ;.
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Integrated correlated variance and marginalization

We alternate two problems: estimate one of the unknown den-
sities at time, marginalizing with respect to the other one.

HW,p/ .. : _ : = -
Ut /O(x' K7 T, 0152) - E{UtBS(wgtr K7 T, O-g,t) | Jg,b gt — ‘SteSt}‘

HW, . . _ . .= — —
U P (z K, T 0f) = E{UtBS(ﬂftr K, T;554) | 554 = aﬁ’eSt,Et}.
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Information content of the densities
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Prior information and assumptions for o ap 2 and ¢&;
We approximate the true probability density ¢ (7 + With a discrete
density z, z € R".

e we know that the density of interest is non-negative:

w(z) > 0.

e we know that the cumulative density equals one:

Zz=1.

We denote by a the cumulative density corresponding to z.

e we assume that the density is smooth and takes on positive
values on the interval [a, a + M].
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e the likelihood function is given by

1
P“(uObS | o = 1) ox P<(a) exp (—mHuObS—AVaHQ)
with
M
A5 — ;UBS(wi Ky, T 5-]2)7 A= R
z = Va,

so that V is a first order difference matrix. Also,

1. if o > s 1<i<n-1
— ) 7+1 = &9 >7] >
P<(e) { O elsewhere.
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e the likelihood function is given by

1
Var

Pi(u®®S | o, an = 1) oc P () exp (—2 |[uP5—AVal?)

e the prior density is given by

| R
Porior(a) o exp (= _[|07/2La|?),

where L is a first order finite difference matrix and @ its vari-
ance
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e the prior with a hyperprior is given by

1 B n
Porior(a | 0) o< exp (~ | D72 La||?~ 37

0, 3
—~4(B8—=)log ),
2 gt )

where D1/2 = diag(@i/Q,eé/Q ... and 0%,/2) e RX7 jg

the random variance with prior based on the gamma distri-
bution

n 0.
Poyper(0) < [ exp ( — % + (8 —-1)log 6j>
j=1
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e the posterior density is given by

obs

Ppost(O%Q | u , oy = 1)

x P<(a) exp (— 1

2Var

[uCPS — AV al?

1212, 12
—§||D Laf©— >
=1

0, 3
2+ (- 2ytogo)

ideas from Somersalo, Calvetti 2007 and imaging inverse prob-
lems

20



MAP and MCMC/CM estimates for 52, and ¢;
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Uncorrelated integrated variance
We assume that the distribution of 57 is log-normal:
5/%,75 ~ N(elut) eth)a

and p1t € Z[pmin, kmaxls 57 € Z[s2, Siax] are unknown. We
compute which lognormal discrete distribution z gives the maxi-
mum likelihood:

— UFW (z, 2, Ct))HQ)-

likelihood
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Applications of the integrated correlated variance
e to price variance and volatility derivatives,
e to use H-W and w(&f) when computing hedging ratios

e to price digital options
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