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Libor market models – introduction

Discrete tenor structure: 0 = T0 < T1 < . . . < Tn = T ∗, with δk = Tk+1 − Tk

T0 T1 T2 T3 Tn−1 Tn = T ∗

Default-free zero coupon bonds: B(·,T1), . . . ,B(·,Tn)

Forward Libor rate at time t ≤ Tk for the accrual period [Tk ,Tk+1]

L(t ,Tk ) =
1
δk

„
B(t ,Tk )

B(t ,Tk+1)
− 1
«
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Discrete tenor structure: 0 = T0 < T1 < . . . < Tn = T ∗, with δk = Tk+1 − Tk

T0 T1 T2 t T3 Tk Tk+1 Tn−1 Tn = T ∗

Defaultable zero coupon bonds with credit ratings: BC(·,T1), . . . ,BC(·,Tn)

Defaultable forward Libor rate at time t ≤ Tk for the accrual period [Tk ,Tk+1]

LC(t ,Tk ) =
1
δk
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BC(t ,Tk )

BC(t ,Tk+1)
− 1
«



Libor modeling

modeling under forward martingale measures, i.e. risk-neutral measures that
use zero-coupon bonds as numeraires

on a given stochastic basis, construct a family of Libor rates L(·,Tk ) and a
collection of mutually equivalent probability measures PTk such that„

B(t ,Tj )

B(t ,Tk )

«
0≤t≤Tk∧Tj

are PTk -local martingales

in addition model defaultable Libor rates LC(·,Tk ) such that„
BC(t ,Tj )

B(t ,Tk )

«
0≤t≤Tk∧Tj

are PTk -local martingales
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Defaultable bonds with ratings

Credit ratings identified with elements of a finite set K = {1, 2, . . . ,K}, where 1
is the best possible rating and K is the default event

Credit migration is modeled by a conditional Markov chain C with state space K

Default time τ : the first time when C reaches the absorbing state K , i.e.

τ = inf{t > 0 : Ct = K}

We consider defaultable bonds BC(·,Tk ) with credit migration process C and
fractional recovery of Treasury value q = (q1, . . . , qK−1) upon default:

BC(t ,Tk ) =
K−1X
i=1

Bi (t ,Tk )1{Ct =i} + qCτ−B(t ,Tk )1{Ct =K},

We have Bi (Tk ,Tk ) = 1, for all i .
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Canonical construction of C
Let (Ω,FT∗ ,F = (Ft )0≤t≤T∗ ,PT∗) be a given complete stochastic basis.

Let Λ = (Λt )0≤t≤T∗ be a matrix-valued F-adapted stochastic process

Λ(t) =

26664
λ11(t) λ12(t) . . . λ1K (t)
λ21(t) λ22(t) . . . λ2K (t)

...
...

. . .
...

0 0 . . . 0

37775
which is the stochastic infinitesimal generator of C.

Enlarge probability space

(Ω,FT∗ ,PT∗)→ (Ω̃,GT∗ ,QT∗)

and use canonical construction to construct C (Bielecki and Rutkowski, 2002)

The process C is a conditional Markov chain relative to F, i.e. for every 0 ≤ t ≤ s and
any function h : K → R

EQT∗ [h(Cs)|Ft ∨ FC
t ] = EQT∗ [h(Cs)|Ft ∨ σ(Ct )],

where FC = (FC
t ) denotes the filtration generated by C.
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The progressive enlargement of filtration

Gt := Ft ∨ FC
t , t ∈ [0,T ∗],

satisfies the (H)-hypothesis:

(H) Every local F-martingale is a local G-martingale.

It is well-known that (H) is equivalent to

(H1) EQT∗ [Y |FT∗ ] = EQT∗ [Y |Ft ],

for any bounded, FC
t -measurable random variable Y

(Brémaud and Yor (1978) or Elliot, Jeanblanc and Yor (2000))

But this follows easily from property

EQT∗ [1B|Fs] = EQT∗ [1B|Ft ], t ≤ s,B ∈ FC
t ,

which is proved as a consequence of the canonical construction.
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Risk-free Lévy Libor model

(Eberlein and Özkan, 2005)

Let (Ω,FT∗ ,F = (Ft )0≤t≤T∗ ,PT∗) be a complete stochastic basis.

as driving process take a time-inhomogeneous Lévy process X = (X 1, . . . ,X d )
whose Lévy measures satisfy certain integrability conditions

X is a special semimartingale with canonical decomposition

Xt =

Z t

0
bsds +

Z t

0

√
csdW T∗

s +

Z t

0

Z
Rd

x(µ− νT∗)(ds, dx),

where W T∗ denotes a PT∗ -standard Brownian motion and
µ is the random measure of jumps of X with PT∗ -compensator νT∗ .
We assume that b = 0.



Construction of Libor rates (backward induction):
Starting from k = n − 1, we have for each Tk :

(i) define the forward measure PTk+1 via

dPTk+1

dPT∗

˛̨̨̨
˛
Ft

=
n−1Y

l=k+1

1 + δlL(t ,Tl )

1 + δlL(0,Tl )
=

B(0,T ∗)
B(0,Tk+1)

B(t ,Tk+1)

B(t ,T ∗)
.

(ii) the dynamics of the Libor rate L(·,Tk ) under this measure

L(t ,Tk ) = L(0,Tk ) exp
„Z t

0
bL(s,Tk )ds +

Z t

0
σ(s,Tk )dX Tk+1

s

«
, (1)

where

X Tk+1
t =

Z t

0

√
csdW Tk+1

s +

Z t

0

Z
Rd

x(µ− νTk+1 )(ds, dx)

with PTk+1 -Brownian motion W Tk+1 and

νTk+1 (ds, dx) =
n−1Y

l=k+1

„
δlL(s−,Tl )

1 + δlL(s−,Tl )
(e〈σ(s,Tl ),x〉 − 1) + 1

«
νT∗(ds, dx).

The drift term bL(s,Tk ) is chosen such that L(·,Tk ) becomes a PTk+1 -martingale.



Construction of Libor rates (backward induction):
Starting from k = n − 1, we have for each Tk :

(i) define the forward measure PTk+1 via

dPTk+1

dPT∗

˛̨̨̨
˛
Ft

=
n−1Y

l=k+1

1 + δlL(t ,Tl )

1 + δlL(0,Tl )
=

B(0,T ∗)
B(0,Tk+1)

B(t ,Tk+1)

B(t ,T ∗)
.

(ii) the dynamics of the Libor rate L(·,Tk ) under this measure

L(t ,Tk ) = L(0,Tk ) exp
„Z t

0
bL(s,Tk )ds +

Z t

0
σ(s,Tk )dX Tk+1

s

«
, (1)

where

X Tk+1
t =

Z t

0

√
csdW Tk+1

s +

Z t

0

Z
Rd

x(µ− νTk+1 )(ds, dx)

with PTk+1 -Brownian motion W Tk+1 and

νTk+1 (ds, dx) =
n−1Y

l=k+1

„
δlL(s−,Tl )

1 + δlL(s−,Tl )
(e〈σ(s,Tl ),x〉 − 1) + 1

«
νT∗(ds, dx).

The drift term bL(s,Tk ) is chosen such that L(·,Tk ) becomes a PTk+1 -martingale.



Construction of Libor rates (backward induction):
Starting from k = n − 1, we have for each Tk :

(i) define the forward measure PTk+1 via

dPTk+1

dPT∗

˛̨̨̨
˛
Ft

=
n−1Y

l=k+1

1 + δlL(t ,Tl )

1 + δlL(0,Tl )
=

B(0,T ∗)
B(0,Tk+1)

B(t ,Tk+1)

B(t ,T ∗)
.

(ii) the dynamics of the Libor rate L(·,Tk ) under this measure

L(t ,Tk ) = L(0,Tk ) exp
„Z t

0
bL(s,Tk )ds +

Z t

0
σ(s,Tk )dX Tk+1

s

«
, (1)

where

X Tk+1
t =

Z t

0

√
csdW Tk+1

s +

Z t

0

Z
Rd

x(µ− νTk+1 )(ds, dx)

with PTk+1 -Brownian motion W Tk+1 and

νTk+1 (ds, dx) =
n−1Y

l=k+1

„
δlL(s−,Tl )

1 + δlL(s−,Tl )
(e〈σ(s,Tl ),x〉 − 1) + 1

«
νT∗(ds, dx).

The drift term bL(s,Tk ) is chosen such that L(·,Tk ) becomes a PTk+1 -martingale.



More precisely,

bL(s,Tk ) = −1
2
〈σ(s,Tk ), csσ(s,Tk )〉

−
Z

Rd

“
e〈σ(s,Tk ),x〉 − 1− 〈σ(s,Tk ), x〉

”
F Tk+1

s (dx).

This construction guarantees that the forward bond price processes„
B(t ,Tj )

B(t ,Tk )

«
0≤t≤Tj∧Tk

are martingales for all j = 1, . . . , n under the forward measure PTk associated
with the date Tk (k = 1, . . . , n).

The arbitrage-free price at time t of a contingent claim with payoff X at maturity
Tk is given by

πX
t = B(t ,Tk )EPTk

[X |Ft ].
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How to include credit risk with ratings in the Lévy Libor
model?

(1) Use defaultable bonds with ratings to introduce a concept of defaultable Libor
rates

(2) Adopt the backward construction of Eberlein and Özkan (2005) to model
default-free Libor rates

(3) Define and model the pre-default term structure of rating-dependent Libor rates

To include credit migration between different rating classes:

(4) Enlarge probability space: (Ω,F ,F,PT∗)→ (eΩ,G,G,QT∗)
and construct the migration process C

(5) The (H)-hypothesis⇒ X remains a time-inhomogeneous Lévy process with
respect to QT∗ and G with the same characteristics

(6) Define on this space the forward measures QTk by:

for each tenor date Tk QTk is obtained from QT∗ in the same way as PTk from
PT∗ (k = 1, . . . , n − 1)
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respect to QT∗ and G with the same characteristics

(6) Define on this space the forward measures QTk by:

for each tenor date Tk QTk is obtained from QT∗ in the same way as PTk from
PT∗ (k = 1, . . . , n − 1)



Conditional Markov chain C under forward measures

Note that
dQTk

dQT∗
= ψk ,

where ψk is an FTk -measurable random variable with expectation 1.

Theorem

Let C be a canonically constructed conditional Markov chain with respect to QT∗ .
Then C is a conditional Markov chain with respect to every forward measure QTk and

p
QTk
ij (t , s) = pQT∗

ij (t , s)

i.e. the matrices of transition probabilities under QT∗ and QTk are the same.

Theorem

The (H)-hypothesis holds under all QTk , i.e. every (F,QTk )-local martingale is a
(G,QTk )-local martingale.
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Rating-dependent Libor rates

The forward Libor rate for credit rating class i

Li (t ,Tk ) :=
1
δk

„
Bi (t ,Tk )

Bi (t ,Tk+1)
− 1
«
, i = 1, 2, . . . ,K − 1

We put L0(t ,Tk ) := L(t ,Tk ) (default-free Libor rates).

The corresponding discrete-tenor forward inter-rating spreads

Hi (t ,Tk ) :=
Li (t ,Tk )− Li−1(t ,Tk )

1 + δk Li−1(t ,Tk )
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Observe that the Libor rate for the rating i can be expressed as

1 + δk Li (t ,Tk ) = (1 + δk Li−1(t ,Tk ))(1 + δk Hi (t ,Tk ))

= (1 + δk L(t ,Tk ))| {z }
default-free Libor

iY
j=1

(1 + δk Hj (t ,Tk ))| {z }
spread j−1→j

Idea: model Hj (·,Tk ) as exponential semimartingales and thus ensure automatically
the monotonicity of Libor rates w.r.t. the credit rating:

L(t ,Tk ) ≤ L1(t ,Tk ) ≤ · · · ≤ LK−1(t ,Tk )

=⇒ worse credit rating, higher interest rate
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Pre-default term structure of rating-dependent Libor rates

For each rating i and tenor date Tk we model Hi (·,Tk ) as

Hi (t ,Tk ) = Hi (0,Tk ) exp
„Z t

0
bHi (s,Tk )ds +

Z t

0
γi (s,Tk )dX Tk+1

s

«
(2)

with initial condition

Hi (0,Tk ) =
1
δk

„
Bi (0,Tk )Bi−1(0,Tk+1)

Bi−1(0,Tk )Bi (0,Tk+1)
− 1
«
.

X Tk+1 is defined as earlier and bHi (s,Tk ) is the drift term (we assume bHi (s,Tk ) = 0,
for s > Tk ⇒ Hi (t ,Tk ) = Hi (Tk ,Tk ), for t ≥ Tk ).

⇒ the forward Libor rate Li (·,Tk ) is obtained from relation

1 + δk Li (t ,Tk ) = (1 + δk L(t ,Tk ))
iY

j=1

(1 + δk Hj (t ,Tk )).
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Theorem

Assume that L(·,Tk ) and Hi (·,Tk ) are given by (1) and (2). Then:

(a) The rating-dependent forward Libor rates satisfy for every Tk and t ≤ Tk

L(t ,Tk ) ≤ L1(t ,Tk ) ≤ · · · ≤ LK−1(t ,Tk ),

i.e. Libor rates are monotone with respect to credit ratings.

(b) The dynamics of the Libor rate Li (·,Tk ) under PTk+1 is given by

Li (t ,Tk ) = Li (0,Tk ) exp
„Z t

0
bLi (s,Tk )ds +

Z t

0

√
csσi (s,Tk )dW Tk+1

s

+

Z t

0

Z
Rd

Si (s, x ,Tk )(µ− νTk+1 )(ds, dx)

«
,

where



σi (s,Tk ) := `i (s−,Tk )−1
“
`i−1(s−,Tk )σi−1(s,Tk ) + hi (s−,Tk )γi (s,Tk )

”
= `i (s−,Tk )−1

h
`(s−,Tk )σ(s,Tk ) +

iX
j=1

hj (s−,Tk )γj (s,Tk )
i

represents the volatility of the Brownian part and

Si (s, x ,Tk ) := ln
“

1 + `i (s−,Tk )−1(βi (s, x ,Tk )− 1)
”

controls the jump size. Here we set

hi (s,Tk ) :=
δk Hi (s,Tk )

1 + δk Hi (s,Tk )
,

`i (s,Tk ) :=
δk Li (s,Tk )

1 + δk Li (s,Tk )
,

and

βi (s, x ,Tk ) := βi−1(s, x ,Tk )
“

1 + hi (s−,Tk )(e〈γi (s,Tk ),x〉 − 1)
”

=
“

1 + `(s−,Tk )(e〈σ(s,Tk ),x〉 − 1)
”

×
iY

j=1

“
1 + hj (s−,Tk )(e〈γj (s,Tk ),x〉 − 1)

”
.



L(t ,Tn−1)

��

// Li−1(t ,Tn−1)

��

Hi (t,Tn−1) // Li (t ,Tn−1)

��
L(t ,Tk )

��

// Li−1(t ,Tk )

��

Hi (t,Tk ) // Li (t ,Tk )

��
L(t ,Tk−1)

��

// Li−1(t ,Tk−1)

��

Hi (t,Tk−1) // Li (t ,Tk−1)

��
L(t ,T1) // Li−1(t ,T1)

Hi (t,T1) // Li (t ,T1)

Default-free Rating i − 1 Rating i

Figure: Connection between subsequent Libor rates



No-arbitrage condition for the rating based model

Recall the defaultable bond price process with fractional recovery of Treasury value q

BC(t ,Tk ) =
K−1X
i=1

Bi (t ,Tk )1{Ct =i} + qCτ−
B(t ,Tk )1{Ct =K}.

Note: the forward bond price process

BC(·,Tk )

B(·,Tj )

is a QTj -local martingale for every k , j = 1, . . . , n − 1
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Recall the defaultable bond price process with fractional recovery of Treasury value q

BC(t ,Tk ) =
K−1X
i=1

Bi (t ,Tk )1{Ct =i} + qCτ−
B(t ,Tk )1{Ct =K}.

iff the forward bond price process

BC(·,Tk )

B(·,Tj )
=

BC(·,Tk )

B(·,Tk )

B(·,Tk )

B(·,Tj )| {z }
dQTk
dQTj

˛̨̨
G·

is a QTk -local martingale for every k = 1, . . . , n − 1.



We postulate that the forward bond price process is given by

BC(t ,Tk )

B(t ,Tk )
:=

K−1X
i=1

iY
j=1

k−1Y
l=0

1
1 + δlHj (t ,Tl )| {z }

:=H(t,Tk ,i)

e
R t

0 λi (s)ds1{Ct =i} + qCτ−
1{Ct =K}

=
K−1X
i=1

H(t ,Tk , i)e
R t

0 λi (s)ds1{Ct =i} + qCτ−
1{Ct =K}, (3)

where λi is some F-adapted process that is integrable on [0,T ∗]. (go to DFM)

Note that this specification is consistent with the definition of Hi which implies the
following connection of bond prices and inter-rating spreads:

Bj (t ,Tk )

Bj−1(t ,Tk )
=

Bj (t ,Tk−1)

Bj−1(t ,Tk−1)

1
1 + δk−1Hj (t ,Tk−1)

and relation
Bi (t ,Tk )

B(t ,Tk )
=

B1(t ,Tk )

B(t ,Tk )

iY
j=2

Bj (t ,Tk )

Bj−1(t ,Tk )
.
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Lemma

Let Tk be a tenor date and assume that Hj (·,Tk ) are given by (2). The process
H(·,Tk , i) has the following dynamics under PTk

H(t ,Tk , i) = H(0,Tk , i)

×Et

 Z ·
0

bH(s,Tk , i)ds −
Z ·

0

√
cs

iX
j=1

k−1X
l=1

hj (s−,Tl )γj (s,Tl )dW Tk
s

+

Z ·
0

Z
Rd

 
iY

j=1

k−1Y
l=1

“
1 + hj (s−,Tl )(e〈γj (s,Tl ),x〉 − 1)

”−1
− 1

!

×(µ− νTk )(ds, dx)

!
,

where bH(s,Tk , i) is the drift term.



No-arbitrage condition

Theorem

Let Tk be a tenor date. Assume that the processes Hj (·,Tk ), j = 1, . . . ,K − 1, are
given by (2). Then the process BC (·,Tk )

B(·,Tk )
defined in (3) is a local martingale with respect

to the forward measure QTk and filtration G iff:
for almost all t ≤ Tk on the set {Ct 6= K}

bH(t ,Tk ,Ct ) + λCt (t) =

 
1− qCt

e−
R t

0 λCt
(s)ds

H(t−,Tk ,Ct )

!
λCt K (t) (4)

+
K−1X

j=1,j 6=Ct

 
1− H(t−,Tk , j)e

R t
0 λj (s)ds

H(t−,Tk ,Ct )e
R t

0 λCt
(s)ds

!
λCt j (t).

Sketch of the proof: Use the fact that the jump times of the conditional Markov chain
C do not coincide with the jumps of any F-adapted semimartingale, use martingales
related to the indicator processes 1{Ct =i}, i ∈ K, and stochastic calculus for
semimartingales.
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Defaultable forward measures

Assume that BC (·,Tk )
B(·,Tk )

is a true martingale w.r.t. forward measure QTk . (back to DFP)

The defaultable forward measure QC,Tk for the date Tk is defined on (Ω,GTk ) by

dQC,Tk

dQTk

˛̨̨̨
˛
Gt

:=
B(0,Tk )

BC(0,Tk )

BC(t ,Tk )

B(t ,Tk )
.

This corresponds to the choice of BC(·,Tk ) as a numeraire.

Proposition

The defaultable Libor rate LC(·,Tk ) is a martingale with respect to QC,Tk+1 and

dQC,Tk

dQC,Tk+1

˛̨̨̨
˛
Gt

=
BC(0,Tk+1)

BC(0,Tk )
(1 + δk LC(t ,Tk )).
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Pricing problems I: Defaultable bond

Proposition

The price of a defaultable bond with maturity Tk and fractional recovery of Treasury
value q at time t ≤ Tk is given by

BC(t ,Tk )1{Ct 6=K} = B(t ,Tk )
K−1X
i=1

1{Ct =i}

"
EQTk

[1− piK (t ,Tk )|Ft ]

+
K−1X
j=1

EQTk
[1{t<τ≤Tk}1{Ct =i}1{Cτ−=j}qj |Ft ]

EQTk
[1{Ct =i}|Ft ]

#
.



Pricing problems II: Credit default swap

consider a maturity date Tm and a defaultable bond with fractional recovery of
Treasury value q as the underlying asset

protection buyer pays a fixed amount S periodically at tenor dates T1, . . . ,Tm−1

until default

protection seller promises to make a payment that covers the loss if default
happens:

1− qCτ−

has to paid at Tk+1 if default occurs in (Tk ,Tk+1]

Proposition

The swap rate S at time 0 is equal to

S =

Pm
k=2 B(0,Tk )

PK−1
j=1 EQTk

[(1− qj )1{Tk−1<τ≤Tk ,Cτ−=j}]Pm−1
k=1 B(0,Tk )EQTk

[1− piK (0,Tk )]
,

if the observed class at time zero is i.
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Pricing problems III: use of defaultable measures

Proposition

Let Y be a promised GTk -measurable payoff at maturity Tk of a defaultable contingent
claim with fractional recovery q upon default and assume that Y is integrable with
respect to QTk .
The time-t value of such a claim is given by

πt (Y ) = BC(t ,Tk )EQC,Tk
[Y |Gt ].

Example: a cap on the defaultable forward Libor rate

The time-t price of a caplet with strike K and maturity Tk on the defaultable Libor rate
is given by

Ct (Tk ,K ) = δk BC(t ,Tk+1)EQC,Tk+1
[(LC(Tk ,Tk )− K )+|Gt ]

and the price of the defaultable forward Libor rate cap at time t ≤ T1 is given as a sum

Ct (K ) =
nX

k=1

δk−1BC(t ,Tk )EQC,Tk
[(LC(Tk−1,Tk−1)− K )+|Gt ].
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