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Single-Name Credit Risk Pricing — What do we do?

Develop general yet tractable Markovian HIM models that

@ fully incorporate information on riskless and credit spread
term structures

@ allow different volatility structures for forward rates, that
can be initialized to closely match empirical structures

@ credit spreads and yield curves are represented by a finite
set of state variables

@ allow arbitrary interest rate-credit spread correlations

@ permit shocks to the economy to impact riskless yield
curves and credit spreads
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Multi-Name Credit Risk Pricing — What do we do?

Extend single-name Markovian HJM models to

@ multi-name infection-type models



Multi-Name Credit Risk Pricing — What do we do?

Extend single-name Markovian HJM models to

@ multi-name infection-type models

Using Kalman filter parameter estimates, we show the
importance of

@ interest rate-credit spread correlations
@ default contagion

@ the initial credit spread curve distribution
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HJM Models: Riskless Dynamics

@ Let P(t, T) be the price at date t of a pure riskless discount
bond that pays $1 at date T:

P(t.T) = eff,Tf(t,u)duj

where f(t, u) represents the date-f forward rate for the
future time increment [u, u + df].



HJM Models: Riskless Dynamics

@ Let P(t, T) be the price at date t of a pure riskless discount
bond that pays $1 at date T:

P(t.T) = e Ji ftwau

where f(t, u) represents the date-f forward rate for the
future time increment [u, u + df].

@ We assume
af(t, T) = ue(t, T)dt + o¢(t, T)dzs(t) + cs(t, T)dANg(t),

given f(0, T). N¢(t) is independent Poisson process with
intensity 7;.



Dynamics of Riskless Bond Prices

Apply Ito’s lemma for jump-diffusion processes to obtain

)
T - (r(t)+;ap(r, Mos(t.T) - | uf(nu)du> ot

—op(t, T) dze(t) + (€7 — 1) aNy(1),

where
)
oot T) = / os(t, u) du,
t

Ko(t, T) = /tTCf(t,U)dU.



HJM Models: Risky Debt

@ For firm A that has not defaulted prior to date t, we have

dYa(t) = 1 with probability  n4(X;)dt
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HJM Models: Risky Debt

@ For firm A that has not defaulted prior to date t, we have
dYa(t) = 1 with probability  n4(X;)dt
AVI 71 0 with probability 1 — na(Xt)at,
@ The date-t price of a bond issued by A is given by
nA(ta T) = VA(t7 T)1TA>f7

where

e~ f[T(f(ﬁU)-i-/\A(t,u)) du

P(t, T)Sa(t, T).

Va(t, T)

Aa(t) = na(t)la(t) is firm A’s forward credit spread, na(t) is
the default arrival intensity, and ¢4(t) denotes LGD.



Credit Spreads Dynamics

We assume
d a(t, T) = pa(t, T)dt+oa(t, T)dza(t) + cia(t, T) dNg(t), t < 7a,
where
@ correlation with diffusive riskless term structure:
E(dz/(1)dza(1)) = Tmenat = (of ) ot

@ ajump in riskless rates could transmit to shocks in the
credit spreads

@ ox(t, T) is predictable

@ ci(t, T) is a deterministic function of time to maturity, T — ¢



Proposition 1: HIJM Restrictions on the Drift Terms

No arbitrage implies
pe(t, T) = op(t, T)ah(t, T) — ce(t, T)e Koty
pa(t, T) = os,(t, T)ou(t, T) + or(t, )X 05 (1, T)
+op(t, )T U(t, T) + ga(t, T),
where
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Proposition 1: HIJM Restrictions on the Drift Terms

No arbitrage implies

p(t, T) = op(t, T)oi(t, T) — ci(t, T)e "Ny,
pa(t, T) = os,(t T)ou(t, T) + of(t, T)EA0g, (1, T)
+op(t, )T (L, T) + ga(t, T),
where

ga(t, T) =ny (Cf(t Te e fe(tT) _ (ce(t, T) + cult, T))e‘(Kp(fvT)Jer(t,T))) .

Problem with HIM models:

@ In general, the dynamics are not Markovian in a small
number of state variables

@ To overcome this issue, we curtail the volatility structures
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Markovian HJM: Volatilities and Jump-Impact Factors

@ Volatilities are given by
of(t,T) = hy(tye 70,
ot T) = ha(tye ™70,
where he(t) and hy (1) are predictable functions.

o Example: hy(t) = min (|/"7,(t)|, Bf), where Fy is a large yet
finite constant, and

he(t) = orr(t)

@ Jump-impact factors are of the form
c(t,T) = cre (7D,
ca(t, T) = cae 70



Proposition 2: Markovian Models for Riskless Debt

Under volatility restrictions, we get exponential affine riskless bond prices:

P(t, T) = ’;((% I)) exp (sz:H,, (t, T)wi(t) — Ha(t, T)s(t) + Hul(t, T)) ,
’ i=1 j=1
where
Hy(t,T) = 1/k] (1 —efm'f'(Tft)), forj=1,....m
Hy(t, T) = —1/(24%) (1 —e*”ff-”*”), forj=1,...,m
Hs(t,T) = ci/w (1 — o770,
HitT) = e T(e%?e*”’(”’” _e%e’”’”> au.
'

The dynamics of the state variables are
dpy(t) = (HE(1) — rsye(t))dt + kg hy (1) 0z (1)

dni(t) = (ME(t) — 2rqbe(t))clt
dips(t) = —yrps(t)dt + dN(t).



Proposition 2: Markovian Models for Risky Debt

Under volatility restrictions, and assuming RMV, the risky bond price at t is
MNa(t, T) = P(t, T)Sa(t, T)1-,>t, Where Su(t, T) is exponential affine:

Sa(0,T)

n

Sa(t, T) = 54(0.0) exp[—Ao(t, T)—;(Ko,/(f: T)éo,j — Ki,i(t, T)é1 )
+ 3 (Keit, T — Ko i(t, T)éa i — Kai(t, T)éa i)
=1 j=1

—Ks(t, T)és(1)]-

The dynamics of the state variables are
doj(t) = (Ha (1) — kako(t)) Ot + raha (t) dza(t)

dérj(t) = (4 (1) — 2kay(1)) dt
déo,i(t) = (hy(t)ha(t) — (ka + Kr)E2,5(1)) at
dési(t) = (hy(D)ha(t) — r4&ai(t)) at
déaj(t) = (hy(t)ha(t) — rada,i(1)) ot

dés(t) = —ymés(t) + dNs(1).
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Stochastic Drivers vs State Variables

@ Assume forward rates are driven by m stochastic drivers,
and credit spreads by n

e Computational burden is limited to that of (m + n) -dim
affine models with jumps

@ Number of state variables: 3mn+2(m+n+1)

@ Number of state variables can sometimes be reduced:
e m=n=1:8
e m=n=1,nojumps and constant h(-) functions: 2

e m=n=1,no jumps and no correlations between interest
rates and credit spreads: 4
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What'’s the Big Deal?

@ Consider a HIM model with m = n =1, and no jumps.
Assume a 30-year time horizon.

@ Standard HJM:

e Forward rates of 30 x 12 = 360 monthly interest rates and
credit spreads need to be tracked.

@ As such, the model is Markovian in 720 state variables.

e If the time partitions are refined to weeks, the number of
state variables increases to 2,880.

@ Markovian HJM:

@ A maximum of 8 state variables need to be maintained, no
matter what the partition.
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Are the Volatility Restrictions Severe?

@ Empirical evidence suggests that there could be a hump in
the volatility structure of forward rates.

@ This can easily be accommodated in our multifactor
models (m > 1, n>1).

@ Proposition 2 can be generalized to enable humped
volatility structures even when m=n=1.

@ In fact, we are able to establish arbitrary shapes:

k
of(t, T) = hf(t)Zaje’“f'(T”), k> 1.
j=1
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Relationship with Duffie-Kan Affine Models

@ Our models are built on different underlying stochastic
processes, where the number of state variables is larger
than the number of stochastic drivers.

@ The drift terms of the path statistics offset spot rate
volatilities in a manner that allows bond yields to be affine
in the states, even though the state variables themselves
do not have to be affine processes.

@ As a result, the family of models we have established are
very rich in structure, yet are easy to implement.

@ In that sense, our analysis complements Duffie-Kan ’96.



Empirical Evidence: Using Kalman Filter

1yr Treasury yield 5yr Treasury yield
6 6
z 4 4
@
<]
53
2 2
0 0
Julos Nov06  Apr08 Julos Nov06  Apr08
AMR: 1yr credit spread AMR: 5yr credit spread
60 N 60
= 40 40
@
<}
1]
220 i 20
0 = 0
Julos Nov06  Apr08 Julos Nov06  Apr08
Lennar: 1yr credit spread Lennar: 5yr credit spread
15 15
= 10 10
O
S
o]
S 5 5
V
0

0
Julos Nov06  Apr08 Julos Nov06  Apr0o8



Importance of Interest Rate-Credit Spread
Correlations

Bond options
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Systemic Credit Shocks and Default Clustering
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Systemic Credit Shocks and Default Clustering

@ The model already allows market-wide events to affect the
riskless yield curve and credit spread curves.

@ We now allow a primary firm’s default to impact the credit
spread of surviving (secondary) firms.

@ Examples: Secondary firm

e could carry significant debt of the primary firm,
e may sell much of its goods to a primary firm,

e may be in competition with the primary firm.



Credit Spread Dynamics: Secondary Firms

We assume

dAs(t, T) = pug(t, T)dt+og(t, T)dzs(t) + cm(t, T)dNk(1)

mg
+ ZCA,-B(.| - YAi(t))dYAi(t)a vt < 78,

=1
where

@ correlation with diffusive riskless term structure:

E(0z/(1)dzp(t) = Thpdt = (f) d

@ correlation with firm A’s diffusive term:

E(dza(t)dz5(1)) = ThE, ot = (f®) d

@ volatility structures are curtailed



Proposition 3: Pricing Risky Debt of Secondary Firms

The price of a risky bond issued by a secondary firm is given by
Ng(t, T) = Vp(t, T)1,5>t, where Vg(t, T) = P(t, T)Sp(t, T) and
Sp(t.T) = m o Bo(tT)= S0 (KE (. T — KB, (1 T)ER,)
o 7t (KE (1 TIEE = KE (1. T)E KB (L T)eE )
xe KE(t, T)e8(t)
cezra(1-e e Una()—cas(T-0)Yah))

Here, Bo(t, T) = J;” |3 gs(v, u) dv du. The K coefficients and &8
state varlables are defined as in Proposition 2, and

tATA
Ups(t) = / na(u)est=dy, fori=1,..., mg.
0



Importance of Default Contagion: Counterparty Risk in
Insurance Contracts
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Importance of Default Contagion: CDS Index Tranches

10-15
3500, : : : :

3000 -

2500 -

basis points

2000

1500

0 0.02 0.04 0.06 0.08 0.1

Cag

15-25

1400
1200 1

1000 -

basis points

800 i i i i
0 0.02 0.04 0.06 0.08 0.1

‘AB
25-35

@
=3
S

basis points
IS
o
o

N
=3
S

i i i i
0 0.02 0.04 0.06 0.08 0.1
‘AB



Generating Default Clustering
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Importance of the Initial Credit Spread Curve Distr.

Distribution of initial credit spread curves Tranche spreads
10-15 1525 25-35

X(0,t) =0.05 3451 1450 111
(0, 0) ~ Uniform(0.025, 0.075) and (0, t) = A(0,0) 3523 1528 128
(0, 0) ~ Uniform(0,0.1) and A\(0, t) = A(0,0) 3528 1528 121
(0, t) incr from A(0, t) = 0.0125 to A(0, t) = 0.0875 2698 1340 107
(0, t) incr from A(O, t) = 0.025 to A(0, t) = 0.075 2883 1366 108
(0, t) incr from A(0, t) = 0.0375 to A(0, ) = 0.0625 3130 1405 110
A(0,t) = 0.05 3451 1450 111
(0, t) decr from A(0, t) = 0.0625 to A(0, t) = 0.0375 3857 1514 115
(0, t) decr from A(0, t) = 0.075 to A(0, ) = 0.025 4345 1601 120

(0, t) decr from A(0, f) = 0.0875 to A(0, t) = 0.0125 4947 1772 141
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Summary

@ Develop a family of models for pricing interest and credit
derivatives on single and multiple names

@ Fairly easy to implement

@ Models have exponentially affine representations for
riskless and risky bond prices

@ Yet the variance structures need not be affine

e The number of state variables is decoupled from the
number of stochastic drivers

o Allow flexible specification of correlations between interest
rates and credit spreads

e Permit default clustering through a variety of channels
(diffusive correlations, jumps, contagion effects)



