
The Evaluation of Swing Contracts with Regime Switching

Carl Chiarella†, Les Clewlow⋆ and Boda Kang†

†School of Finance and Economics

University of Technology, Sydney

⋆Lacima Group, Sydney

6th World Congress of the Bachelier Finance Society
Hilton, Toronto

June 26 2010



Plan of Talk

• Basic Swing Contracts with Make-up and Carry forward provisions

• Forward Price Curve with Regime Switching Volatility

• Setting up the Optimisation Problem

• Pentanomial Tree Approach

• Numerical Examples

• Conclusion

Chiarella, Clewlow and Kang BFS 2010 1



1 Literature Review

• Theoretical: Carmona and Touzi [2008] develop a mathematical frame-
work for swing options viewed as nested optimal-stopping problems.

• Binomial and Trinomial Trees: Thompson [1995], Clewlow, Strickland,
and Kaminski [2001a,b] describe features and valuation approach of sin-
gle year swing contract using trinomial tree approach.

• Simulation: Ib́ãnez [2004] seeks to determine an approximate optimal
strategy before pricing by simulation.

• Stochastic Programming: Barrera-Esteve, et al.[2006].

• Quantization: Bally et al. [2005], Bardou et al. [2007]. A quantization
approach is implemented to price the Swing option without penalty.

• Pentanomial Tree: Wahab and Lee [2009]. A pentanomial tree approach
is implemented to price swing options under GBM.
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2 Issues Addressed in This Presentation

• Regime Switching Dynamics for the forward prices.

• Pentanomial tree approach to approximate the regime switching dynam-

ics.

• Formulation of optimisation problem to account for make-upand carry-

forward features under regime switching.

• Numerical implementations.
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3 Basic Swing Contracts

• A basic swing contract is a contract for the supply ofdaily quantities

of gas (within certain constraints) over a specified number of years at

a specified set of contract prices. There is usually an annualcontract

quantity (ACQTi
)

• Eachgas year there is a minimum volume of gas (Take-or-Pay or Mini-

mum Bill) which will be charged for regardless of the actual quantity of

gas taken (MBTi
).

• Eachday of the gas year there is a maximum volume of gas which can

be taken. Hence eachgas year there is a maximum volume of gas which

can be taken (MAXTi
).
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3.1 A Basic Take-or-Pay Contract as a Strip of Call Op-
tions

• A Take-or-Pay contract can be viewed as a variable volume swap or a

strip of variable volume options with constraints.

• In the absence of a Take-or-Pay constraint

Minimum Bill = 0

the optimal strategy each day is to purchase the max. allowable quantity

when the market price is above the contract purchase price and nothing

otherwise.

• In this case the contract has the maximum amount of flexibility and the

value is equivalent to a strip of European Call options.
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Figure 2: Payoff Diagram: Take-or-Pay as Strip of Call Options.
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3.2 A Basic Take-or-Pay Contract as a Swap

• If

Minimum Bill = Maximum Annual Quantity,

the optimal daily strategy typically is to purchase the maximum allow-

able quantity regardless of the market price (depends on form of penalty).

• Now the contract is equivalent to a swap and has the minimum amount

of flexibility and value.
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Figure 3: Payoff Diagram: Take-or-Pay as Swap
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3.3 A Take-or-Pay Contract is a Combination of Call Strip
and a Swap

• If

0 < Minimum Bill < Maximum Annual Quantity,

then the optimal strategy is to exercise like a strip of call options until

the time left (to end of contract) is just sufficient to reach min. bill by

taking the max. each day.

• In the constrained region there is a critical spot price (maybe less than

the contract price) above which it is optimal to take the max.daily quan-

tity, even though this results in a loss relative to the spot price case.
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Figure 4: Payoff Diagram: Take-or-Pay as Combination of a Swap and Call

Strip.
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3.4 Swing Contracts with Make-Up and Carry Forward

• Make-Up

− In years where the gas taken is less than Minimum Bill the shortfall

(paid for in current year) is added to theMake-Up Bank (MTi
).

− In later years where the gas taken is greater than some reference level

(typically Minimum Bill or ACQ) additional gas can be taken from

the Make-Up Bank and a refund paid.

• Carry Forward

− In years where the gas taken is greater than some reference level

(typically ACQ) the excess gas is added to theCarry Forward Bank

(CTi
).

− In later years Carry Forward Bank gas can be used to reduce the

Minimum Bill for that year.
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Figure 5: Carry Forward Bank

Qi = quantity taken in yeari

CBTi
= carry forward base in yeari

CTi
= (1 − βi−1)CTi−1

+ max{Qi − CBTi
, 0}

[evolution of carry forward bank ]
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=MB

(0)
Ti

− βiCTi
[use carry-forward bank to reduce min. bill]

MTi
=(1 − γi−1)MTi−1
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− QTi

, 0) [evolution of make-up bank]
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4 Forward Price Curve with Regime Switching

• The stochastic or random nature of commodity prices plays a central

role in the models for valuing financial contingent claims, for example,

swing options on commodities and gas storage contracts.

• The observed quantity –F (t, T )

F (t, T ) = forward price at timet for delivery of gas at timeT.

• Those contracts are widely traded on many exchanges with prices read-

ily observed.

• The nearest maturity forward price is used as a proxy for the spot price.

• The longer dated contracts are used to imply the convenienceyield.
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4.1 Stochastic volatility needed

• Deterministic volatility models− the volatility curve is fixed and the

volatility of a specific forward price can change deterministically only

with maturity.

• To properly describe the actual evolution of the volatilitycurve, one

needs a process consisting of both deterministic and randomfactors.

• The drawback of diffusion models is that theycannot generate sudden
and sufficiently large shifts of the volatility curve.

• Adding traditional type jump processes, for example Poisson jumps, one

finds that,the frequency of the jumps is too large while the magni-
tude of the jumps is too small.
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4.2 Regime Switching is better

• An appropriate framework for modelling the dynamics of volatilities:

a class ofpiecewise-deterministic processeswhich allow volatility to

follow an almost deterministic process between two random jump times.

• The simplest process in this class is the continuous-time homogeneous

Markov chain with a finite number of jump times. Models with such

a process approximate the actual jumps in volatility with jumps over a

finite set of values.

• Hidden Markov Model (HMM) - EM Algorithm , Markov Chain
Monte Carlo (MCMC) approach are able to estimate the parameters

of such models.
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4.3 Regime Switching Forward Price Curve

We use the following model for the forward prices in the natural gas market.

dF (t, T )

F (t, T )
= σ1(t, T )dW1(t) + σ2(t, T )dW2(t),

σ1(t, T ) = < σ1, Xt > c(t)
(

e−<α1,Xt>(T −t)(1 − σl1) + σl1

)

,

σ2(t, T ) = < σ2, Xt > c(t)
(

σl2 − e−<α2,Xt>(T −t)
)

,

c(t) = c +
J

∑

j=1

(dj(1 + sin(fj + 2πjt))) .
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4.4 One Factor Model: An Example

• To price the gas swing contract, we consider the one factor model:

dF (t, T )

F (t, T )
=< σ, Xt > c(t) · e−α(T −t)dWt,

whereWt is a standard BM andXt is a finite state Markov Chain and

c(t) = c +
∑J

j=1 (dj(1 + sin(fj + 2πjt))) captures the seasonal

effect.

• Here, the spot volatilityσ will take different values depending on the

state of the Markov ChainXt. Consequently, the spot price will follow:

S(t) = F (0, t) · exp

(
∫ t

0

< σ, Xs > c(s) · e−α(t−s)dWs − 1

2
Λ2

t

)

,

whereΛ2
t =

∫ t

0
(< σ, Xs > c(s) · e−α(t−s))2ds.
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5 Pentanomial Tree Construction

• Bollen (1998) constructed a pentanomial lattice to approximate a regime

switching GBM and to price both European and American options.

• Wahab and Lee (2009) extended the pentanomial lattice to a multinomial

tree and studied the price of swing options under the regime switching

GBM dynamics.

• To construct a discrete pentanomial lattice approximatingthe spot price

processS(t), we letYt =
∫ t

0
< σ, Xs > c(s) · e−α(t−s)dWs.

• We build a discrete lattice to approximateYt first, we know that:

dYt = −αYtdt+ < σ, Xt > c(t)dWt.
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5.1 Nodes

• Assume there are only two regimes for the volatility, namelylow volatil-

ity σL and high volatilityσH .

• In pentanomial tree in Figure 9, each regime is represented by a trino-

mial tree with one branch being shared by both regimes.

• In order to minimize the number of nodes in the tree, nodes from both

regimes are merged by setting the step sizes of both regimes at a 1 : 2

ratio.

Chiarella, Clewlow and Kang BFS 2010 22



j+2

j+1

j

j−2i∆ t

j

(i+1)∆ t

∆ Y

2∆ Y

j−1

Figure 8: The recombining of a pentanomial tree.
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Figure 9: The Alternative Branching Processes for the mean reverting pro-

cesses. The level where the tree switches from one branchingto another

depends on the attenuation parameterα and the time step∆t.
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• The time values in the tree isti = i∆t, where∆t is the time step.

• The levels ofY are equally spaced and have the formYi,j = j∆Y ,

where∆Y is the space step.

• Any node in the tree can therefore be referenced by a pair of integers

(i, j) that is the node at thei−th time step andj−th level.

• From stability and convergence considerations, a reasonable choice for

the relationship between the space step∆Y and the time step∆t is

given by (see Wahab and Lee (2009)):

∆Y =

{

σL

√
3∆t, σL ≥ σH/2;

σH

2

√
3∆t, σL < σH/2.
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5.2 Transition probabilities

• The trinomial branching process and the associated probabilities are

chosen to be consistent with the conditional drift and variance of the

process.

• When the volatility is in the low regime,σ = σL, looking at the inner

trinomial tree, we want to match:

E[∆Y ] = −αYi,j∆t, E[∆Y 2] = σ2
L∆t + E[∆Y ]2;

equating the first and second moments of∆Y in the tree we have:
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pL
u,i,j((k + 1) − j) + pL

m,i,j(k − j) + pL
d,i,j((k − 1) − j) =

−αYi,j∆t/∆Y,

pL
u,i,j((k + 1) − j)2 + pL

m,i,j(k − j)2 + pL
d,i,j((k − 1) − j)2 =

(σ2
L∆t + (−αYi,j∆t)2)/∆Y 2,

together withpL
u,i,j + pL

m,i,j + pL
d,i,j = 1 we can obtain

pL
u,i,j =

1
2

[

σ2

L∆t+α2Y 2

i,j∆t2

∆Y 2
+ (k − j)2 − αYi,j∆t

∆Y
(1 − 2(k − j)) − (k − j)

]

,

pL
d,i,j =

1
2

[

σ2

L∆t+α2Y 2

i,j∆t2

∆Y 2
+ (k − j)2 +

αYi,j∆t

∆Y
(1 + 2(k − j)) + (k − j)

]

,

pL
m,i,j = 1 − pL

u,i,j − pL
d,i,j.
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• When the volatility is in high regime,σ = σH ,we will have:

pH
u,i,j =

1
8

[

σ2

H∆t+α2Y 2

i,j∆t2

∆Y 2
+ (k − j)2 − αYi,j∆t

∆Y
(2 − 2(k − j)) − 2(k − j)

]

,

pH
d,i,j =

1
8

[

σ2

H∆t+α2Y 2

i,j∆t2

∆Y 2
+ (k − j)2 +

αYi,j∆t

∆Y
(2 + 2(k − j)) + 2(k − j)

]

,

pH
m,i,j = 1 − pH

u,i,j − pH
d,i,j.
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5.3 State prices for both regimes

• We will displace the nodes in the above simplified tree by adding the

proper driftsai which are consistent with the observed forward prices.

• For x = L, H we define state pricesQx
i,j as the present value of a

security that pay off$1 if Y = j∆Y andXi∆t = x at timei∆t and

zero otherwise.

• Hence those state prices are accumulated according to

QL
0,0 = 1, QH

0,0 = 0; for lower volatility regime

QL
0,0 = 0, QH

0,0 = 1; for higher volatility regime

QL
i+1,j =

∑

j′

(QL
i,j′p

X
L,L + QH

i,j′p
X
H,L)pL

j′,jP (i∆t, (i + 1)∆t);
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QH
i+1,j =

∑

j′

(QL
i,j′p

X
L,H + QH

i,j′p
X
H,H)pH

j′,jP (i∆t, (i + 1)∆t);

• WherepX
x,x′ is the probabilities the Markov Chain transits from the state

x to the statex′ andpL
j′,j andpH

j′,j are the probabilities the spot transits

from j′ to j but arriving at low and high volatility regime respectively

and P (i∆t, (i + 1)∆t) denotes the price at timei∆t of the pure

discount bond maturing at time(i + 1)∆t.

• To use the state prices to match the forward price curve we use:

P (0, i∆t)F (0, i∆t) =
∑

j

(QL
i,j + QH

i,j)Si,j,

• Hence the adjustment needed to ensure the tree correctly returns the

observed futures curve can be calculated.
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Curve.
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6 Evaluation of Swing Contract

• LetV ∗
t (S, Q, i) andq∗

t (S, Q, i), t = 0, 1, . . . , T be the timet value

and decision function of a Take-or-Pay contract when the spot price is

S, the period-to-date consumption isQ and the system is in regimei.

• MB - Minimum Bill; K - Contract Price.

• Optimal decisions(q∗
T (S, Q, i)) and optimal value functions(V ∗

T (S, Q, i))

at the maturity of the contract are as follows

q∗
T (S, Q, i) =

{

1, S > K;

min(max(MB − Q, 0), 1), S ≤ K.

V ∗
T (S, Q, i) = (S−K)q∗

T (S, Q, i)−K max(0, Q+q∗
T (S, Q, i)−MB).
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• For t = T − 1, · · · , 0, working backward in time we have:

V ∗
t (S, Q, i) =

max
q∈[0,1]







q(S − K) + e−rdt

N
∑

j=1

pijE
i
S[V ∗

t+1(St+1, Q + q, j)]







;

q∗
t (S, Q, i) =

argmaxq







q(S − K) + e−rdt

N
∑

j=1

pijE
i
S[V ∗

t+1(St+1, Q + q, j)]







.

together with the following boundary conditions:

V ∗
t (S, Qmax, i) = 0, q∗

t (S, Qmax, i) = 0,

which means that the value function will be zero and there is no gas to use if
the period to date consumption reaches the maximal quantity.
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7 Numerical Examples

One year take-or-pay contract price differences when

• Volatilities: σL = 0.5, σH = 1.0;

• Mean reversion rate:α = 5;

• Forward curve:F (0, t) = 100;

• Interest rate:r = 0;

• Contract price:K = 100;

• Maturity time:T = 365.

• Minimal Bill: MB = 365 × 80% = 292;

• Transition matrix of the hidden MC:P =





0.8516 0.1484

0.7080 0.2920



 .
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Figure 12: A typical evolution of Markov ChainX(t).
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Figure 13: Day 0 price differences in two different regimes.
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Figure 14: Day 0 decision differences in two different regimes.
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Figure 15: Day 0 spot delta differences in two different regimes.
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One year take-or-pay contract price differences when

• Volatilities: σL = 0.5, σH = 1.0;

• Mean reversion rate:α = 5;

• Forward curve:F (0, t) = 100;

• Interest rate:r = 0;

• Contract price:K = 100;

• Maturity time:T = 365;

• Minimal Bill: MB = 365 × 80% = 292;

• Transition matrix of the hidden MC:P =





0.99 0.01

0.01 0.99



 .
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Figure 16: A typical evolution of Markov ChainX(t).
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Figure 17: Day 0 price differences in two different regimes.
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Figure 18: Day 0 decision differences in two different regimes.
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Figure 19: Day 0 spot delta differences in two different regimes.
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8 Conclusions

• Set up swing option contracts

• Allowed for make-up and carry-forward banks

• Regime Switching model for forward curve dynamics

• Implement the pentanomial tree approach

• Some numerical examples

• Future work

− Hedging strategies.
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