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1 Literature Review

e Theoretical: Carmona and Touzi [2008] develop a mathegdtiame-
work for swing options viewed as nested optimal-stoppirapfams.

e Binomial and Trinomial Trees: Thompson [1995], Clewlowi&tand,
and Kaminski [2001a,b] describe features and valuationcamh of sin-
gle year swing contract using trinomial tree approach.

e Simulation: Id&hez [2004] seeks to determine an approximate optimal
strategy before pricing by simulation.

e Stochastic Programming: Barrera-Esteve, et al.[2006].

e Quantization: Bally et al. [2005], Bardou et al. [2007]. Aamuization
approach is implemented to price the Swing option withouigty.

e Pentanomial Tree: Wahab and Lee [2009]. A pentanomial wpeoach
IS Implemented to price swing options under GBM.
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Issues Addressed in This Presentation

Regime Switching Dynamics for the forward prices.

Pentanomial tree approach to approximate the regime angiclynam-
ICS.

Formulation of optimisation problem to account for makeamgl carry-
forward features under regime switching.

Numerical implementations.



3 Basic Swing Contracts

e A basic swing contract is a contract for the supplydaily quantities
of gas (within certain constraints) over a specified numlfgrears at
a specified set of contract prices. There is usually an antararact

quantity ACQr,)

e Eachgasyear there is a minimum volume of gas (Take-or-Pay or Mini-
mum Bill) which will be charged for regardless of the actuahqgtity of
gas taken M Br,).

e Eachday of the gas year there is a maximum volume of gas which can
be taken. Hence eadas year there is a maximum volume of gas which
can be takenX A Xr,).
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3.1 A Basic Take-or-Pay Contract as a Strip of Call Op-
tions

e A Take-or-Pay contract can be viewed as a variable volume swa
strip of variable volume options with constraints.

e In the absence of a Take-or-Pay constraint
Minimum Bill = 0

the optimal strategy each day is to purchase the max. alleveplantity
when the market price is above the contract purchase prit@atihing
otherwise.

¢ In this case the contract has the maximum amount of flexyaind the
value is equivalent to a strip of European Call options.



2 Payoff ($)

Figure 2: Payoff Diagram: Take-or-Pay as Strip of Call Ops$io



3.2 A Basic Take-or-Pay Contract as a Swap

o If

Minimum Bill = Maximum Annual Quantity,

the optimal daily strategy typically is to purchase the maxm allow-
able quantity regardless of the market price (depends omdbpenalty).

e Now the contract is equivalent to a swap and has the minimuouain
of flexibility and value.



Figure 3: Payoff Diagram: Take-or-Pay as Swap



3.3 A Take-or-Pay Contract is a Combination of Call Strip
and a Swap

o |f
0 < Minimum Bill < Maximum Annual Quantity,

then the optimal strategy is to exercise like a strip of catians until
the time left (to end of contract) is just sufficient to reacimmbill by
taking the max. each day.

e In the constrained region there is a critical spot price (pealess than
the contract price) above which it is optimal to take the naatly quan-
tity, even though this results in a loss relative to the spaEcase.
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Figure 4. Payoff Diagram: Take

Strip.
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3.4 Swing Contracts with Make-Up and Carry Forward

e Make-Up

— In years where the gas taken is less than Minimum Bill thet&ddbr
(paid for in current year) is added to tMake-Up Bank (Mr,).

— In later years where the gas taken is greater than somemeéeievel
(typically Minimum Bill or ACQ) additional gas can be takeroi
the Make-Up Bank and a refund paid.

e Carry Forward

— In years where the gas taken is greater than some referevale le
(typically ACQ) the excess gas is added to Geery Forward Bank

(CTq,)
— In later years Carry Forward Bank gas can be used to reduce the
Minimum Bill for that year.

12
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4 Forward Price Curve with Regime Switching

e The stochastic or random nature of commodity prices playsrdaral
role in the models for valuing financial contingent clain, éxample,
swing options on commodities and gas storage contracts.

e The observed quantity #(t, T)

F(t, T) = forward price at timet for delivery of gas at timeT.

e Those contracts are widely traded on many exchanges witegpread-
ily observed.

e The nearest maturity forward price is used as a proxy for piog jgrice.

e The longer dated contracts are used to imply the convenmaetok
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4.1 Stochastic volatility needed

e Deterministic volatility models— the volatility curve is fixed and the
volatility of a specific forward price can change deterntioaly only
with maturity.

e To properly describe the actual evolution of the volatikiyrve, one
needs a process consisting of both deterministic and rarfiachors.

e The drawback of diffusion models is that thegnnot generate sudden
and sufficiently large shifts of the volatility curve.

e Adding traditional type jump processes, for example Poigsmps, one
finds that,the frequency of the jumps is too large while the magni-
tude of the jumps is too small
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4.2 Regime Switching is better

e An appropriate framework for modelling the dynamics of wdltees:
a class ofpiecewise-deterministic processewhich allow volatility to
follow an almost deterministic process between two randanpjtimes.

e The simplest process in this class is the continuous-tinmedg@neous
Markov chain with a finite number of jump times. Models withcBu

a process approximate the actual jumps in volatility withnps over a
finite set of values.

e Hidden Markov Model (HMM) - EM Algorithm , Markov Chain

Monte Carlo (MCMC) approach are able to estimate the parameters
of such models.
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4.3 Regime Switching Forward Price Curve

We use the following model for the forward prices in the nakigias market.

dF(t,T)
= t, T)dW(t t, T)dWs(t
F(t,T) 0-1( ? ) 1( )—I_O-z( Y ) 2( )9
o1(t, T) = <o1,Xs>c(t) (e_<°‘1’Xt>(T_t)(1 —oy,) + Ull) ]
o2(t,T) = <03,X; > c(t) (o, — e” < Xe>TD)

c(t) = c+ > (dj(1+sin(f; + 2mjt))).

j=1
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4.4 One Factor Model: An Example

e To price the gas swing contract, we consider the one factaleino

dF(t,T)

—< 0. X; > c(t) - e T gw.
F(t,T) g, 17 C() € ty

whereW; is a standard BM anX; is a finite state Markov Chain and
c(t) =c+ ijl (d; (1 + sin(f; + 2mjt))) captures the seasonal
effect.

e Here, the spot volatilitys will take different values depending on the
state of the Markov ChaiX;. Consequently, the spot price will follow:

t

1
S(t) = F(0,t) - exp (/ <oy, Xs > c(s) e 2t dw, — 5A§> :
0

whereA? = fg(< o, Xs > c(s) - e (t=3))2gs,
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5 Pentanomial Tree Construction

e Bollen (1998) constructed a pentanomial lattice to appnae a regime
switching GBM and to price both European and American ojstion

e Wahab and Lee (2009) extended the pentanomial lattice tdtanomial
tree and studied the price of swing options under the regimmelsng
GBM dynamics.

e To construct a discrete pentanomial lattice approximattnegspot price
processS (t), we letY; = [ < o, X, > c(s) - e *¢=2)dW,.

e We build a discrete lattice to approximake first, we know that:

d}/;g = —a}/;gdt—F < g, Xt > C(t)th.
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5.1 Nodes
e Assume there are only two regimes for the volatility, name\y volatil-
ity o, and high volatilityo g .

e In pentanomial tree in Figure 9, each regime is representaealthno-
mial tree with one branch being shared by both regimes.

e In order to minimize the number of nodes in the tree, nodas froth

regimes are merged by setting the step sizes of both reginaes a 2
ratio.

22
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Figure 9: The Alternative Branching Processes for the meaerting pro-
cesses. The level where the tree switches from one branthiagother
depends on the attenuation parameteand the time step\t.
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The time values in the tree ts = 1 At, whereAt is the time step.

The levels ofY” are equally spaced and have the fo¥y); = jAY,
whereAY is the space step.

Any node in the tree can therefore be referenced by a pairtefjens
(2, 7) that is the node at the—th time step ang —th level.

From stability and convergence considerations, a reas®mabice for
the relationship between the space sty and the time step\t is
given by (see Wahab and Lee (2009)):

oL V3AL, oL > on/2

AY:{
GTHVSAt, or, < (TH/Z.
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5.2 Transition probabilities

e The trinomial branching process and the associated pritiehiare
chosen to be consistent with the conditional drift and vaergaof the
process.

e When the volatility is in the low regimer = o, looking at the inner
trinomial tree, we want to match:

E[AY] = —aY; ;At, E[AY?] = 07 At + E[AY]?;

equating the first and second momentgX¥ in the tree we have:

26



pﬁ,i,j((k +1)—j)+ pfn,z’,j(k —J)+ pCIi,z’,j((k —1)—j) =
—O(Y;',jAt/AY,

pL, ((k+1)— 5> +pk , (k—5)2+p5, . (E—1)—j)* =
(02 At + (—aY; jAt)?)/AY?,

together withpy; ; . + p), ; . + pg; ; = 1 we can obtain
L —
pu,i,g N 2v2 2
At+a?Y? At . Y; At
3| AR 4 (k- )% — AN - 2(k — ) — (k— )],
L —
Pa,ij =

2

1 {a% At+a?Y? At?

o (k= )2 + SRR+ 2(k — 5)) + (k= J)]

L . . L .
Prij = 1= Puii— Pdij
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e When the volatility is in high regimaer = oz ,we will have:

H
Pu.,i,j

At+a?Y? At? : an i A
lrhamatar o esne o -2 ),
H _
pda 9.7 o

|~

At L ey st a2 5]

— 1 _ 1 _
pm,’i,j T 1 puviaj pd’i’j.
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5.3 State prices for both regimes

e We will displace the nodes in the above simplified tree by agldhe
proper driftsa; which are consistent with the observed forward prices.

e Forx = L, H we define state pnce@"” as the present value of a

security that pay off1if Y = jAY andXzAt — x attimez At and
zero otherwise.

e Hence those state prices are accumulated according to
Qg,o =1, ng = 0; for lower volatility regime
ng = 0, Q;?O — 1; for higher volatility regime

i1 = Z(Qz #Prr + Qs )Py ;P(IAL, (i 4+ 1) At);
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i1 = Z(Q #Pr.a + Qiyph u)py ;P(iAL, (i + 1) At);

e WherepZ , is the probabilities the Markov Chain transits from theestat
x to the stater’ andp;?,, p andpf,’, ;are the probabillities the spot transits
from 7/ to 5 but arriving at low and high volatility regime respectively

and P(iAt, (¢ + 1)At) denotes the price at tim&At of the pure
discount bond maturing at timg + 1) At.

e To use the state prices to match the forward price curve we use

P(0,iAt)F(0,iAt) = Y (QF, + Q%)S: ;,
J

e Hence the adjustment needed to ensure the tree correatipnsetne
observed futures curve can be calculated.
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6 Evaluation of Swing Contract

o LetV,*(S,Q,1)andq; (S,Q,%),t =0,1,...,T bethetime value
and decision function of a Take-or-Pay contract when the gpoe is
S, the period-to-date consumptiongkand the system is in regime

e M B - Minimum Bill; K - Contract Price.

e Optimal decisiongq;-(S, Q, 2)) and optimal value functionsV./ (S, Q, 7))
at the maturity of the contract are as follows

1, S > K;

7 S,Q,1) =
17 (5, @:1) { min(max(MB — Q,0),1), S < K.

V:(S,Q,t) = (S—K)qr (S, Q,1)—K max(0, Q+q1(S,Q,1)—MB).

32



e FOrt =T —1,-...,0,working backward in time we have:

V;*(Sa Q, 7’) —

0,1
q€[0,1] i1

N
max {q(S — K) +e " Z ping[‘/;gj_l(St—Flv Q + q, J)]} 3

qr(sa Q, ’l,) —

N
argma, {q(S —K)+e ") pi E5[V  (Se41,Q + q,j)]} :

j=1
together with the following boundary conditions:
‘/1.;*(57 Qmaa:a ’L) = 0, q,’f(S, Qmawv 7/) = 0,

which means that the value function will be zero and ther@igas to use if
the period to date consumption reaches the maximal quantity

33
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Numerical Examples

One year take-or-pay contract price differences when

\Volatilities: o, = 0.5, 04 = 1.0;
Mean reversion ratex = 5;
Forward curve:F'(0,t) = 100;
Interest rater = 0;

Contract price: K = 100;
Maturity time: T = 365.

Minimal Bill: M B = 365 x 80% = 292;

Transition matrix of the hidden MCP =

0.8516
0.7080

0.1484
0.2920

34
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Evolution of the Markov Chain X(t)
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Figure 12: A typical evolution of Markov ChaiX (t).
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Figure 13: Day O price differences in two different regimes.
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Decision Difference
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Spot Delta in high vol regime Spot Delta in low vol regime
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Figure 15: Day 0 spot delta differences in two different negs.
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One year take-or-pay contract price differences when

\Volatilities: o, = 0.5, 04 = 1.0;
Mean reversion ratex = 5;
Forward curveF'(0,t) = 100;
Interest rater = 0;

Contract price: K = 100;
Maturity time: T = 365;

Minimal Bill: M B = 365 x 80% = 292;

0.99
0.01

Transition matrix of the hidden MCP =

0.01
0.99
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Evolution of the Markov Chain X(t)
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Figure 16: A typical evolution of Markov ChaiX (t).
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Figure 17: Day O price differences in two different regimes.
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Decisions in high vol regime Decisions in low vol regime
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Figure 18: Day 0 decision differences in two different reggnm
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Spot Delta
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Figure 19: Day 0 spot delta differences in two different negs.
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Realization of Markov Chain
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. Different realizations of the Markov Chains.
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Figure 21: Different decisions and the spot price evolwgion
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8 Conclusions

e Set up swing option contracts

e Allowed for make-up and carry-forward banks

e Regime Switching model for forward curve dynamics
e Implement the pentanomial tree approach

e Some numerical examples

e Future work

— Hedging strategies.
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