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Approaches for Arb-free pricing of derivative securities

Underlying is a scalar stochastic process S evolving in cont. time.

Some derivative contract pays ZT = F (path of S) at fixed time T .

If no rates & no arb., price at Z0 = EZT , for some mgl. measure.

Three approaches to finding Z0 = EZT :

I 1) Parametric: Specify a set of parameters Θ governing the

dynamics of S. Compute Z0 = f(Θ)

I 2) Non-parametric: If possible, make only enough assumptions so

that there exists a function g of just S such that Z0 = Eg(ST ).

Observe Eg(ST ) from the market prices of options on ST .

I 3) Semi-parametric (ours): If possible, generalize the

non-parametric approach by letting g also depend on

parameters:Z0 = Eg(Θ, ST ).



Assumptions

I Zero interest rates. This is not essential.

I Work in (Ω,F , {Fu},Q), where Q is an equiv. mgl. measure.

I S is a positive martingale share price.

I Yt := log(St/S0)

I [Y ] denotes the quadratic variation of Y .

I (The floating leg of) a continuously-sampled variance swap pays

[Y ]T at expiry T .

I (The floating leg of) a discretely-sampled variance swap pays∑N−1
n=0 (Ytn+1 − Ytn)2 where 0 = t0 < t1 < · · · < tN = T .

I Other volatility derivatives pay functions of [Y ]T .
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Standard variance swap valuation approach

Neuberger (90), Dupire (92), Carr-Madan (98), Derman et al (99):

I Let a log contract pay −YT = − log(ST /S0).

The sign convention makes log contracts have nonnegative value.

I Assume S is continuous, i.e. it never jumps.

I Then the floating leg of a continuously sampled variance swap

has the same value as two log contracts:

E[Y ]T = 2E(−YT ).



Standard variance swap valuation approach

I Widely influential as a reference point for variance swap dealers

I Has been since 2003 the basis for the CBOE’s VIX index,

the most popular indicator of options-implied expectations of

realized variance.

The VIX is computed as the square root of twice the value of a

synthetic log contract (synthesized from calls and puts).

I Also the basis for the VXN and the VDAX-NEW.

I Robust (“model-free”). Assumes only that S > 0 and that S is

continuous.

I But what if S can jump?



Lévy processes

An adapted process (Xu)u≥0 with X0 = 0 is a Lévy process if:

I Xv −Xu is independent of Fu for 0 ≤ u < v

I Xv −Xu has same distribution as Xv−u for 0 ≤ u < v

I Xv → Xu in probability, as v → u

Lévy -Khintchine Theorem: There exists a constant a ∈ R, a second

constant σ ≥ 0, and a Lévy measure ν(A), with ν({0}) = 0 and∫
R(1 ∧ x2)ν(dx) <∞, such that the characteristic function of the

Lévy process Xt

EeizXt = etψ(z)

where the characteristic exponent is

ψ(z) := iaz − 1
2
σ2z2 +

∫
R

(eizx − 1− izxI|x|≤1)ν(dx).



Interpreting the Characteristic Exponent

I Recall that if X is a (scalar-valued) Lévy process, then the Lévy

-Khintchine theorem states that there exist a ∈ R, σ ≥ 0, and a

Lévy measure ν(A), with ν({0}) = 0 and
∫

R(1 ∧ x2)ν(dx) <∞,

such that EeizXt = etψ(z), where the characteristic exponent is:

ψ(z) := iaz − 1
2
σ2z2 +

∫
R
(eizx − 1− izxI|x|≤1)ν(dx)

I The Lévy measure

ν(A) = E(number of jumps of size ∈ A, per unit time).

I Probabilistic Interpretation: Xt = at+ σBt +Ljt +M j
t , where the

constant a adds drift, the constant σ scales the S.B.M. B, Lj has

Poisson arrival of only large jumps (of size > 1), and M j is a

martingale having only small jumps (of size ≤ 1).
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Constructing a time-changed Lévy processes

I Let X be a Lévy process such that EeX1 <∞.

Let X̄u := Xu − u log EeX1 , so that eX̄ is a martingale.

I Let the time change {τt}t∈[0,T ] be an increasing continuous

family of stopping times.

So τ is a stochastic “clock” that measures “business time”:

Calendar time t ↔ Business time τt

We do not assume that τ and X are independent.

I Assume Yt = X̄τt
and St = S0 exp(Yt).

The time-changed Lévy process Y can exhibit stochastic

volatility, stochastic jump intensity, volatility clustering, and

“leverage” effects.



Examples of time-changed Lévy processes

Example of a family of TCLPs: Assume Yt = X̄τt
where

X̄u = Bxu − u/2 + Lu

dτt = Vtdt

dVt = α(Vt, Yt)dt+ β(Vt, Yt)dWt + γ(Vt−, Yt−)dJt

where J is a Poisson process, L is a pure-jump Lévy process, and

Bvu := ρBxu +
√

1− ρ2Bu

Wt =
∫ t

0

1√
Vs

dBvτs

where Bx and B are independent Brownian motions wrt

business-time filtration F . We do not specify V0, α, β, γ, ρ, J .



Exponentials of TCLPs include all PC martingales

I All positive continuous (PC) martingales have the form

S0 exp X̄τt where X̄ is Brownian motion with drift −1/2.

I This follows from Dambis-Dubins-Schwarz:

Apply DDS to the local martingale

Mt :=
∫ t

0

1
Sθ

dSθ = log(St/S0) +
1
2

[log(S·/S0)]t

to find BM W such that Mt = Wτt
where

τt := [M ]t = [log(S·/S0)]t.

Conclude that log(St/S0) = Wτt
− τt/2.

I So the standard valuation model for variance swaps is just the

Brownian special case of a time-changed Lévy process (TCLP)

framework.



Variance swaps on time-changed Lévy processes

We show that:

I In general, the payoff of a variance swap can no longer be

replicated (The only perfect hedge is in a Japanese garden).

I However, variance swaps still admit pricing in terms of log

contracts. The floating leg of a variance swap still has value given

by a positive multiple of the value of a log contract.

I The correct multiplier is not necessarily 2.

I The multiplier depends only on the characteristics of the driving

Lévy process X, not on the stochastic clock τ that we run it on.



The multiplier

I Let X be a nonconstant Lévy process, with EeX1 <∞ and

E[X]1 <∞. Define the multiplier of X as:

QX :=
E[X]1

log EeX1 − EX1

I Proposition: The multiplier exists and satisfies

0 < QX =
VarX1

log EeX1 − EX1
=

κ′′(0)
κ(1)− κ′(0)

where κ(z) := log EezX1 is the cumulant generating function of X.

Proof: Define the martingale Mu := Xu − uEX1. Then

VarX1 = EM2
1 = E[M ]1 = E[X]1.



The multiplier

I Proposition: Let X from the last slide have Lévy triple (a, σ2, ν).

Then

QX =
σ2 +

∫
x2ν(dx)

σ2/2 +
∫

(ex − 1− x)ν(dx)
.

Proof: We have −EX1 = −a−
∫
|x|≥1

xν(dx) and

log EeX1 = a+ σ2/2 +
∫

(ex − 1− xI|x|≤1)ν(dx)

Summing gives the denominator of QX .

I Use this formula if given the Lévy measure of X.

Use formula on the last slide if given the characteristic function

of X.



Variance swap valuation

Proposition

If EτT <∞ then

E[Y ]T = QXE(−YT ).

Hence the floating leg of a continuously sampled variance swap has the

same value as QX log contracts.

Proof.

[X]u +QXX̄u is a Lévy martingale, so by Wald’s equation

E([X]τT
+QXX̄τT

) = 0.

Continuity of τ implies E[Y ]T = E[Xτ· ]T = E[X]τT
= QXE(−YT ).



Time-change of bracket = bracket of time-change

Last step (swapping bracket and time-change) assumed continuity of

τ .

In this setting, jumps arise from X jumping, not from clock jumping

(although we allow the clock rate to jump).



Example: S is time-changed geom’c Brownian motion

Let X be standard Brownian motion. Then

QX =
E[X]1

log EeX1 − EX1
=

1
1/2

= 2

This recovers the 2 multiplier when the underlying of the options is a

positive continuous martingale.



Example: Time-changed fixed-size jump diffusion

Let X have Brownian variance σ2 and Lévy measure

λ1δc1 + λ2δc2

where δc denotes a point mass at c, and c1 > 0 and c2 < 0. Then

QX =
σ2 + λ1c

2
1 + λ2c

2
2

σ2/2 + λ1(ec1 − 1− c1) + λ2(ec2 − 1− c2)
.

Third-order Taylor expansion in (c1, c2) about (0, 0), if σ 6= 0:

QX ≈ 2− 2λ1

3σ2
c31 +

2λ2

3σ2
|c2|3,

increasing in absolute down-jump size, decreasing in up-jump size.



Time-changed double-exponential jump-diffusion

Let X have Brownian variance σ2 and Lévy density

ν(x) = λ1a1e
−a1|x|Ix>0 + λ2a2e

−a2|x|Ix<0

where a1 ≥ 1 and a2 > 0. So up-jumps have mean size 1/a1,

down-jumps have mean absolute size 1/a2. Then

QX =
σ2 + 2λ1/a

2
1 + 2λ2/a

2
2

σ2/2 + λ1/(a1 − 1)− λ2/(a2 + 1)− λ1/a1 + λ2/a2
.

Third-order Taylor expansion in (1/a1, 1/a2) about (0, 0), if σ 6= 0:

QX ≈ 2− 4λ1/σ
2

a3
1

+
4λ2/σ

2

a3
2

,



Example: Time-changed extended CGMY

Let X have the extended CGMY Lévy density

ν(x) =
Cn
|x|1+Yn

e−G|x|Ix<0 +
Cp
|x|1+Yp

e−M |x|Ix>0,

where Cp, Cn > 0 and G,M > 0, and Yp, Yn < 2. Then QX =

−CnΓ(2−Yn)GYn−2−CpΓ(2−Yp)MYp−2

CnΓ(−Yn)[GYn−(G+1)Yn +YnGYn−1]+CpΓ(−Yp)[MYp−(M−1)Yp−YpM
Yp−1]

Expanding the denominator in 1/G and 1/M ,

QX ≈ 2× GYn−2 + ρMYp−2

GYn−2(1− 2−Yn

3G + . . .) + ρMYp−2(1 + 2−Yp

3M + . . .)
.

where ρ := CpΓ(2− Yp)/(CnΓ(2− Yn)).



Example: Time-changed basic CGMY

The basic CGMY model takes Cp = Cn = C and Yp = Yn = Y .

ν(x) =
C

|x|1+Y
e−G|x|Ix<0 +

C

|x|1+Y
e−M |x|Ix>0

Its multiplier is

QX =
Y (1− Y )(GY−2 +MY−2)

GY − (G+ 1)Y + Y GY−1 +MY − (M − 1)Y − YMY−1

≈ 2× GY−2 +MY−2

GY−2(1− 2−Y
3G + . . .) +MY−2(1 + 2−Y

3M + . . .)
.

Note the sign asymmetry between the − 2−Y
3G and the +2−Y

3M .

(Small G, big M) gives a bigger multiplier than (big G, small M).



Example: Time-changed VG

The Variance Gamma model takes Y = 0.

ν(x) =
C

|x|
e−G|x|Ix<0 +

C

|x|
e−M |x|Ix>0

Its multiplier is

QX =
1/G2 + 1/M2

− log(1 + 1/G) + 1/G− log(1− 1/M)− 1/M

≈ 2× G−2 +M−2

G−2(1− 2
3G + . . .) +M−2(1 + 2

3M + . . .)
.

Note the sign asymmetry between the − 2
3G and the + 2

3M .



Example: Time-changed normal inverse Gaussian (NIG)

Let X have no Brownian component. Let X have Lévy density

ν(x) =
δα

π

exp(βx)K1(α|x|)
|x|

,

where δ > 0, α > 0, |β| < α, and K1 denotes the modified Bessel

function of the second kind and order 1. Then X has CGF

κ(z) = log EezX1 = γz + δ(
√
α2 − β2 −

√
α2 − (β + z)2),

for some γ that we need not specify. Then

QX =
κ′′(0)

κ(1)− κ′(0)
=

α2/(α2 − β2)
α2 − β2 − β −

√
(α2 − β2)(α2 − (β + 1)2)

.

Small jump-size limit: take α→∞. Expanding in 1/α,

QX ≈ 2− 4β + 1
2α2

.

which is decreasing in β, the parameter which controls the “tilt”.



Intuition: Up-jumps vs down-jumps

First-order effects: Multiplier is decreasing in up-jump size, but

increasing in down-jump size. From Itô’s formula for

semi-martingales:

−2 log(ST /S0) =
∫ T

0+

−2
St−

dSt +
1
2

∫ T

0+

2
S2
t−

d[S]ct

+
∑

0<t≤T

(
− 2∆ logSt −

−2
St−

∆St
)

=
∫ T

0+

−2
St−

dSt + [Y ]T +
∑

0<t≤T

( 2
St−

∆St − 2∆Yt − (∆Yt)2
)
.

So 2 log contracts, plus zero-expectation share-trading P&L, pay

[Y ]T +
∑

0<t≤T

(
2e∆Yt − 2− 2∆Yt − (∆Yt)2

)
≈ [Y ]T +

∑
0<t≤T

1
3

(∆Yt)3.

So 2E(−YT ) > E[Y ]T in presence of up-jumps ∆Yt > 0.



Skewness

I For a Lévy measure ν such that
∫
|x|>1

exν(dx) <∞ and∫
|x|>1

x2ν(dx) <∞, define the exponential skewness of ν by

6
∫

(ex − 1− x− x2/2)ν(dx).

which =
∫

(x3 + x4/4 + x5/20 + · · · )ν(dx)

so leading term is third moment.

I Proposition: for any X with Lévy measure ν, we have QX > 2 if

and only if ν has negative exponential skewness.

Proof: Exponential skewness is negative if and only if

σ2/2 +
∫

(ex − 1− x)ν(dx) < σ2/2 +
∫

(x2/2)ν(dx)

and QX = 2× RHS/LHS.



Multipliers of empirically estimated processes

CGMY’s calibration. S&P 500 options in 2000. CIR clock.

X Data Lévy parameters QX

CGMY Jun (G,M, Yp, Yn) = (0.423, 24.6,−4.51, 1.67) 2.37

VG Jun G = 11.0,M = 30.1 2.10

NIG Jun α = 69.7, β = −62.1 2.12

CGMY Sep (G,M, Yp, Yn) = (1.64, 16.9,−2.90, 1.54) 2.17

VG Sep G = 12.4,M = 33.6 2.09

NIG Sep α = 99.8, β = −91.1 2.11

CGMY Dec (G,M, Yp, Yn) = (3.68, 52.9,−2.12, 1.22) 2.13

VG Dec G = 11.7,M = 42.7 2.10

NIG Dec α = 274.8, β = −265.4 2.10



Conclusion

I As in the standard variance swap (VS) pricing theory, we

assumed continuous monitoring and that the log contract paying

− log(S/S0) can be priced off vanillas on S.

I However, we generalize the standard VS pricing theory by

assuming that S is a time-changed exponential Lévy process.

I We showed that the floating leg of a VS has the same value as

QX log contracts.

I When the underlying price process is a positive continuous

martingale, the multiplier QX is 2. With jumps, the multiplier

depends only on the Lévy process. Empirical calibrations imply

2.1 to 2.4.



An Empirical Puzzle

I Since variance swaps have become liquid, it is feasible to collect

market quotes on variance swap rates.

I In joint work with Liuren Wu, we obtained quotes from a dealer

and compared them with values of log contracts synthesized from

index options.

I Our basic finding is that the empirical multiplier hovers about 2.

Apparently, dealers are ignoring the effect of negatively skewed

jumps when pricing variance swaps.

I It can be that negative jump skewness is priced in, but that other

effects cheapen variance swaps, eg stochastic dividends,

stochastic interest rates, counterparty credit risk, feedback effects

from dynamic hedging, and of course, supply and demand.



Completed Extensions

I In reality, all variance swaps have discrete sampling. Roger Lee

and I have investigated the effects of discrete sampling when the

VS is written on a time-changed Lévy process (TCLP). We find

that discrete sampling increases variance swap rates under an

independence condition. The premium is bounded below by

squared spreads of log contracts.

I Roger and I have further generalized the analysis to contracts

paying functions of the quadratic variation of a TCLP, eg.

hockey sticks or square roots. If the time-change is independent

of the Lévy driver, then these general contracts can be priced off

vanillas on S.
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