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Robust pricing of derivatives

Underlying F'. Some derivative contract pays Zr, a function of F’s
path. Ways to find the contract’s price Zyg = EZp:
» Specify a model for the underlying F'. Compute

“Parametric” :  Zy = V(model parameters)

» But we are skeptical of all models. Instead let us find g such that

for all models in some universe, we have one of:

“Nonparametric” :  Zy = Eg(Fr)

“Semiparametric” :  Zy = V(Eg(Fr), subset of parameters)
“Nonparametric bounds” :  Zy < Eg(Fr)

where Eg(Fr) is observable, given prices of options on Frp.

Note that semiparametric may be more robust than nonparametric.



Assumptions

» Work in (Q, F,{F,},P), where P is martingale measure.

v

Underlying F' is a positive martingale, for example a

forward /futures price, or (under zero rates) a share price.

v

Y; := log(F;/Fp), the log-returns process.

» [Y] denotes the quadratic variation of Y.

v

(The floating leg of) a continuously-sampled variance swap pays
Yz

at expiry T'.

v

(The floating leg of) a discretely-sampled variance swap pays

Zﬁf:_ol(Y}nH —Y;, )2 where 0 =tg <t; <---<ty="T.



Variance swaps



Variance swap valuation — standard approach

Neuberger (1990), Dupire (92), Carr-Madan (98), Derman et al (99).

>

>

Let a log contract pay —Yr = —log(Fr/Fp). Assume existence.
Assume F' is continuous

Then variance swap value = value of two log contracts
E[Y]r = 2E(-Y7)

Widely influential as a reference point for volatility traders
This result is the basis for the CBOE’s VIX index, and other
indicators of options-implied expectations of realized variance
(VXN, RVX, VSTOXX, VDAX-NEW, etc).

Robust (“model-free”) in that it assumes only the continuity of

underlying paths. But empirically jump risk does exist.



Extensions

Our results (exact semi-parametric pricing formulas)
extend the standard theory as follows:
» Our earlier talk introduced jump risk into F' dynamics.
» Generalize payoffs to G-variation and share-weighted G-variation.
Instead of cumulating (dY;)?, let us cumulate G(dY;).
Our “meta”’-results provide explanations of:

» Why does the standard theory work: Why do log contracts price

variance swaps? Why two log contracts?
» Which variance-related contracts admit semi-parametric
valuations that have become easy to solve by our methods?

Which contracts are still hard to solve semi-parametrically?



Jump risk



Lévy processes

An adapted process (Xy,)u>0 with Xo = 0 is a Lévy process if:
» X, — X, is independent of F,, for 0 < u <w
» X, — X, has same distribution as X, _, for 0 <u <wv
» X, — X, in probability, as v — u
Lévy -Khintchine: There exist a € R, o > 0, and a Lévy measure v,

with v({0}) = 0 and [, (1 A 2?)v(dz) < oo, such that each X; has CF

]Eeith — etw(z)

where

1 ,
W(z) == iaz — 50222 + /(e”“C — 1 —izaly<1)v(de)
R

Intuition: v(A) = E(number of jumps of size € A, per unit time).



Time-changed exponential Lévy processes
A share price could be modeled by an exponential Lévy process
Fy = Fyexp(Xy)

Indeed, the case that X; = at + oW, gives GBM with drift.
But drawbacks:

» Today’s return has same distribution as yesterday’s.

» Today’s return is independent of yesterday’s.



Time-changed exponential Lévy processes

» Let X be a Lévy process such that EeX! < oo.
Let X! := X, — ulogEeXt, so that eX'isa martingale.

> Let the time change {7;};c[o,7) be an increasing continuous
family of stopping times.
So 7 is a stochastic “clock” that measures “business time”:

Calendar time ¢t <+—  Business time 7

We do not assume that 7 and X are independent.

» Assume Y; = X/ and F; = Fyexp(Y}).
The time-changed Lévy process Y can exhibit stochastic
volatility, stochastic jump intensity, volatility clustering, and
“leverage” effects.

» By DDS, this family includes all positive continuous martingales.



Variance swaps on time-changed Lévy processes

Our earlier work introduced jumps:

>

| 4

Variance swaps still admit pricing in terms of log contracts.
However the correct number of log contracts may not be 2.

The correct variance swap multiplier depends only on the

dynamics of the Lévy driver X, not on the time change 7.
Explicit formula for multiplier:

o? + [2?dv(z)

X,G _
@ 02/2+ [(e* =1 —z)dv(z)’

Whether multiplier is greater or less than 2 depends on skewness

of Lévy measure.

Effect of discrete sampling



Variation swaps



G-variation of a semimartingale Y

For a general semimartingale Y, we define the G-variation of Y. Let
G(z) = alz| + y2* + o(2?)

be continuous, where o > 0 and +y are constants and:
» Either @ = 0 or Y has finite variation. If the latter, then let
Vi =Y, - > 0<s<t AY;, and let TV(YY) be total variation of Y.
» The o(z?) is for x — 0. It can be relaxed if Y = 0,
where Y¢ is the continuous local martingale part of Y.
Then define the (continuously-sampled) G-variation of Y by

V= aTVYY), +4Y ) + Y G(AY,)

0<s<t

(where aTV :=0if a = 0).



G-variation of a semimartingale Y
More generally, let
G(z) = alz| +~2* + g(z)

where g satisfies any of

O(Jz|") and r € IN(1,2] and Y° =0

=
B

~—
I

O(lz|"y and r € IN(0,1] and Y4 =Y° =0

=2
B

S~—
Il

where
I::{’I‘ZO:/ (lz]" A 1)dvy < oo for all ¢ > 0}
(0,¢] xR

where vy denotes the jump compensator of Y



Motivation for definition of G-variation

For sampling interval A,,, let us define the discretely-sampled

G-variation of Y by

[T/An)
V¥n)r:= Y G(Yja, —Yj-1a,)
j=1

As n — oo, if A,, = 0, we have Skorokhod convergence in probability
VYC(n) — VYC,

This motivates our definition of VY*@, and justifies referring to it as

“continuously-sampled” G-variation. Intuition:

T
2 / G(dYy)
0



Examples of GG-variation swaps

Canonical example is a variance swap: G(z) = 2. Other examples:

» Total variation swap

G(x) = ||

» Simple-returns variance swap

» Moment swap, for integer p > 1
G(z) =2?
» Absolute moment swap, for real p > 1

G(z) = |=f”



Examples of GG-variation swaps

» Capped-movement versions of above: Replace G with
G(min(max(z,a),b))
where —oco < a < b < co. Example: Down semivariance, where
G(z) := (z A 0)?,

is a statistic of interest to portfolio managers.

» Capped-G versions of above: Replace G with
min(G(x), M)
Example: Capped variance
Gx)=2> ANM

limits the liability of variance sellers.



Variation swaps on time-changed Lévy processes

We show that:
» (G-variation swaps still admit pricing in terms of log contracts.
» However the correct number of log contracts may not be 2.

» The correct variation swap multiplier depends only on G and the

dynamics of the Lévy driver X, not on the time change 7.



Pricing variation swaps, with jump risk



The multiplier

» Let X be a nondeterministic Lévy process, with EeX! < oo and
E|X|; < oo and [ Gdv < co. Define the multiplier of (X, G) by

EVlX,’G - Ele’,c

QX"G = frd
- —EX] logEeXr —EX,

» Proposition: Let X have generating triplet (A4, 02, v). Then

_ec?/2+ [a(e” — 1)dv(z)| +y0* + [ G(x)dv(x)
B 02/2+ [(e* — 1 —z)dv(z)

QX,G
Proof: Denominator is sum of —EX; = —A4 — flw\>1 v(dx) and
logEeXt = A +0%/2 + /(e"” —1—215<1)v(dx)

Numerator is sum of “(ex-jump) drift”, “Brownian”, and “jump”

contributions to ]Elel’G



Pricing variation swaps on time-changed Lévy processes

Proposition

If Erp < oo then
EVy Y = QXCE(-Yr).

Hence the variation swap and Q%G log contracts have the same value.

Proof.
VXSG 4+ QXC X! is a Lévy martingale, so by Wald’s equation

X',G X,G _
E(VX'G 4 Q¥GX! ) =o.

By 7 continuity, EV,\'¢ = EV; "¢ = EVX'C = QX.CR(-Yy). O



Proposition: EV}¢ = Q¥CE(-Yy)
Idea of proof: For all fixed times u, by Lévy property of X and VX G
EV,X"C = QY CE(-X,).
Replace v with 7, by a form of the optional stopping theorem:
EVX'C = QY CE(-X,,).
Exchange variation operator and time-change, by continuity of 7:
EV: ¢ = QXCR(-X,,).

as claimed.
In this setting, jumps arise from X jumping, not from clock jumping

(although we allow the clock rate to jump).



Example: Time-changed geometric Brownian motion

Let X be Brownian motion and G(x) = z%. Then

QX,G _ E[X]l _ i -9
“EX] 12

This recovers the 2 multiplier for all positive continuous martingales.



Example: Time-changed fixed-size jump diffusion
Let X have Brownian variance o2 and Lévy measure
A10e, + A20e,
where 0. denotes a point mass at ¢, and ¢; > 0 and ¢ < 0. Then

QX6 = ald(e —1) + Xa(e2 — 1) + 702 + M\ G(c1) + A2G(c2)

0'2/2 + )\1(661 —1- Cl) + )\2(6‘:2 —1- CQ)
In particular, consider G(z) = 2.

Third-order Taylor expansion in (c¢1, ¢) about (0,0), if o # 0:

increasing in absolute down-jump size, decreasing in up-jump size.



Time-changed Kou double-exponential jump-diffusion
Let X have Brownian variance o2 and Lévy density
v(z) = Mare” 111, oo + Ngage 21711, g

where a1 > 1 and as > 0. So up-jumps have mean size 1/ay,
down-jumps have mean absolute size 1/as.
For G(x) = 22,
0% +2\1 /a3 + 2X2/a3
02/2+ X /(a1 —1) = Xo/(ag + 1) — A1 /a1 + Ao /as’

Third-order Taylor expansion in (1/a1,1/a2) about (0,0), if o # 0:

CQXQG::

4A1/U2 4A2/02
- 3+ 3

aj as

QX*G ~ 2

)



Example: Time-changed extended CGMY

Let X have the extended CGMY Lévy density

v(z) = Wa <0 T+ We >09

where Cp, C,, > 0 and G, M > 0, and Y,,Y,, < 2. For G(z) = 22,

QX,G _

—C,T(2-Y,)G" =2 —C,T(2-Y,)M*P—?
CnT(=Y,)[GYn —(G4+1)Yn +Y,,GYn—1]+C,T(=Y,) [MYP —(M—1)Yr» =Y, MYp 1]

Expanding the denominator in 1/G and 1/M,

GYn=2 4 pMYr—2
_ — v, :
GYn=2(1— EXa 4 )4 pMYo—2(1 4 2202 4 )

Q%% ~ 2 x

where p:= C,I'(2-Y,)/(C.T(2 - Y,)).



Example: Time-changed VG

The Variance Gamma model takes Y = 0.

C _als C _Mis
v(z) = me Gl o+ me Mlzl1, 0
For G(x) = 22, its multiplier is
QX6 — 1/G* +1/M?
—log(1+1/G)+1/G —log(1 —1/M)—1/M
G—2 +M—2
~ 2 X

G2(1—5+.. )+ M 21+ 555 +...)

Note the sign asymmetry between the —% and the +3LM'



Example: Time-changed normal inverse Gaussian (NIG)

Let X have no Brownian component. Let X have Lévy density

v(z) = dor exp(Bz) K (o z])

™ ||
where § > 0, a > 0, |8] < «, and K; = modified Bessel function of the

)

second kind and order 1. Then X has cumulant transform

K(z) = logEe*X1 = 2 4+ 6(y/a2 — 32 — /a2 — (B + 2)?),

for some 7 that we need not specify. Then for G(z) = 22,

gre_ KO o?/(a® = §) |
k(1) —#'(0) —B—=/(a?=p)(a? (B +1)?)
Small jump-size limit: take o — co. Expanding in 1/,
46+ 1
XGx2—
@ 202

which is decreasing in 8, the parameter which controls the “tilt”.



Share-weighted variation



Definition

Define the dual or share-weighted G-variation of Y by

t t
- F,
m”ﬁ:/eﬂﬂsz —=dv); e
0 o fo

where the integrals are pathwise Riemann-Stieltjes.
Share-weighted variation swaps, which pay f/tY’G, confer variation

exposure proportional to underlying level F'. Motivations:
» Investor may be bullish

» Investor may have view that the market’s downward implied

volatility skew is too steep.

» Investor may be seeking to hedge variation exposure that grows

as Y increases, e.g. in dispersion trading

» Investor may wish to trade single-stock variance without caps



Examples of share-weighted variation swaps

» Share-weighted counterparts exist, for each example of G.

» Canonical example is the gamma swap: G(z) = x>

Standard theory: Gamma swap has same value as 2 contracts on

(Fr/Fo)log(Fr/Fy).

» Pre-jump share-weighted G-variation swap uses modified weights:

tp,_

RATARS
o o 7

This is equivalent to using share-weighted variation with respect

to the function e *G(x).



Pricing share-weighted variation swaps
Proposition
Again let G(x) = alz| + v2® + g(z). Under integrability conditions,
EVy ¢ = QX CE((Fr/Fy) log(Fr/Fy)).

where the dual multiplier

‘a02/2 + [a(l —e*)dv(z)| +vo? + [ e*G(z)dv(x)
02/2+ [(1—e® + ze*)dv(z)

QX,G _

Proof.
Change to “share measure” P where dP, /dP,, = exp X/..
Apply unweighted result to X := —X and G(x) := G(—=z).



Share-weighted variation swaps, with jump risk

We have shown that, for generalized variation,
in the presence of jump risk,
» Share-weighted G-variation swaps still admit pricing in terms of
F'log F' contracts.
» However the correct number of F'log I’ contracts may not be 2.
» The correct share-weighted variation swap multiplier depends
only on G and the dynamics of the Lévy driver X, not on the

time change 7.



Skewness impact depends on the contract
» Q% — 2 has same sign as Ele/’G —2E(—X1) =
3zt 5 9
/<3l2+0(:17 )>dl/(x) for G(z) = x
2 3 4
/<§;+zuxﬁ0dm@ for G(z) = (e% — 1)?
» Q%G — 2 has same sign as E\N/lx,’c —2R(X}eX1) =
3 4

/<g+2+ow0@@) for G(z) = 22
2

dv(x) for G(z) = e "a?

dv(z) for G(z) = (e” — 1)?

dv(x) for G(z) = e “(e* —1)?



Multipliers of empirically calibrated processes

Variance Simple variance Third moment
X Data 1 F Fi_ 1 e F_ 1 F Fi_
cemy gun 237 1.81 270 1.62 153 1.85 -1.85 -0.42 -2.11
cemy sep 2.17 1.87 233 1.76 162 1.89 -0.61 -0.33 -0.65
cemy pec 2.13 1.88 227 1.78 163 1.89 -045 -0.31 -0.48
va sun 210 191 220 1.83 1.69 192 -0.32 -0.25 -0.34
ve s 2.09 1.92 218 1.84 172 192 -0.28 -0.23 -0.30
ve pee 2.10 191 221 182 1.67 191 -0.33 -0.27 -0.34
NIG sun 212 1.89 225 1.79 1.63 190 -0.39 -0.31 -0.42
NIG sep 211 1.90 222 1.81 166 191 -0.35 -0.28 -0.36
NIG pee 2.10 190 221 182 1.67 191 -0.33 -0.27 -0.35



Hedging



Perfect hedging with two jump sizes

Let X have jump sizes c¢; > 0 and ¢ < 0 and zero Brownian part, and

piecewise constant paths:
V= )\1(561 + )\2602

where A; 1= (1 —e®)X and Ay := (e — 1)\, for arbitrary A > 0.
Then
r qX’G Y,G
Q%% log(Fo/Fr) + / dF, = V.
where ¢%°C 1= (c2G(c1) — c1G(c2))/(ca(e® — 1) + c1(1 — e%2)).

So replicate VTY G by holding;:

» Q%C log contracts, statically

> gXC /F;_ shares, dynamically



Discrete Sampling



Intuition

Does decreasing the sampling frequency tend to increase or decrease
the expectation of realized variance? Intuition:

Consider 1 long sampling period vs. 2 shorter sampling periods.
With log-returns of R; and Ry in the two periods,

the more-frequently-sampled realized variance is
R} + R3
The less-frequently-sampled realized variance is
(Ri + R2)? = RI + R3 + 2R Ry

So coarser sampling adds

2R1 Ry

to the realized variance.



Intuition
» The expected impact of less sampling is
QE(Rle) =2ER|ERs + QCOV(]%l7 RQ)

» If R would be martingale increments, E(R; Rg) would vanish.
Indeed, realized variance of a martingale M is perfectly

replicable, continuously
T
Mz = M§ +/ 2M;_dM; + [M]r
0
or discretely
MZ = Mg+ 2M, (AM,,)+ Y (AM,,)?

» But due to taking logs, E(R; R2) > 0 typically.



Discrete sampling

Let 0=tg <t1 <---<ty=T. Write A, Z := Ztn+1 _Ztn~

If Err < 0o and 7 and X are independent then
N-1 N-1 N-1
EY (AY)?=E[Y]r+ > (EA,Y)*+ ) Var(E(A,Y]r)).
n=0 n=0 n=0

Proof: M; :=Y; — EX; is a martingale. Sum the following over n:
E(A[Y]) = E(A[M]) = E(AM)? = E(AY — (AT)EX,)?
=E(AY — E(AY|7))? = E(Var(AY|7))
= Var(AY) — Var(E(AY|7))
=E(AY)? — (EAY)? — Var(E(AY]|7)).

Hence discrete sampling increases variance swap values. Premium

depends on squared spreads of log contracts, and Var(E(AY|7)).
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Why does standard theory work

» Why do log contracts price variance swaps?

Because, if F' is an exponential Lévy process, then
log F and [log F

are both Lévy processes.

So the ratio @ of their “drifts” gives their relative price.
This property survives under continuous time change —
and such time changes generate all continuous positive

martingales.

» Why two log contracts?
Because — log(GBM) has drift 1/2. So the drift ratio is 2.



Extension to jumps

The drift-ratio reasoning still holds, but with a different ratio.
Variance swap value = a multipler (@) times log contract value.
True for all time-changed Lévy processes. Arbitrary stochastic clock,

arbitrary correlation. The ) does not depend on the clock.

» For continuous underlying paths, @ = 2.

» In the presence of negatively skewed jump risk,

Q>2

In that case, quotations based on a 2 multiple (including VIX)
would underprice the continuously-sampled variance, and

typically furthermore underprice the discretely-sampled variance.



Extension to other contracts

Let G(z) = alz| + v2? + o(2?).

» By same techniques, we price a G-variation swap which pays

Vr =aTV(Yr +9[Yr + > G(AY.)

0<s<T
(subject to conditions on G,Y), because V; is Lévy if Y is.

» By same techniques, we price share-weighted G-variation:
VYG . / Zs QU6
t

in terms of an Frlog Fr contract, via measure change.

» Under further conditions, can price volatility derivatives paying
h([Y]r).

Different techniques needed, because h([Y];) may not be Lévy
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