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Robust pricing of derivatives

Underlying F . Some derivative contract pays ZT , a function of F ’s

path. Ways to find the contract’s price Z0 = EZT :

I Specify a model for the underlying F . Compute

“Parametric” : Z0 = V (model parameters)

I But we are skeptical of all models. Instead let us find g such that

for all models in some universe, we have one of:

“Nonparametric” : Z0 = Eg(FT )

“Semiparametric” : Z0 = V (Eg(FT ), subset of parameters)

“Nonparametric bounds” : Z0 ≶ Eg(FT )

where Eg(FT ) is observable, given prices of options on FT .

Note that semiparametric may be more robust than nonparametric.



Assumptions

I Work in (Ω,F , {Fu},P), where P is martingale measure.

I Underlying F is a positive martingale, for example a

forward/futures price, or (under zero rates) a share price.

I Yt := log(Ft/F0), the log-returns process.

I [Y ] denotes the quadratic variation of Y .

I (The floating leg of) a continuously-sampled variance swap pays

[Y ]T

at expiry T .

I (The floating leg of) a discretely-sampled variance swap pays∑N−1
n=0 (Ytn+1

− Ytn)2 where 0 = t0 < t1 < · · · < tN = T .
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Variance swap valuation – standard approach

Neuberger (1990), Dupire (92), Carr-Madan (98), Derman et al (99).

I Let a log contract pay −YT = − log(FT /F0). Assume existence.

I Assume F is continuous

I Then variance swap value = value of two log contracts

E[Y ]T = 2E(−YT )

I Widely influential as a reference point for volatility traders

I This result is the basis for the CBOE’s VIX index, and other

indicators of options-implied expectations of realized variance

(VXN, RVX, VSTOXX, VDAX-NEW, etc).

I Robust (“model-free”) in that it assumes only the continuity of

underlying paths. But empirically jump risk does exist.



Extensions

Our results (exact semi-parametric pricing formulas)

extend the standard theory as follows:

I Our earlier talk introduced jump risk into F dynamics.

I Generalize payoffs to G-variation and share-weighted G-variation.

Instead of cumulating (dYt)
2, let us cumulate G(dYt).

Our “meta”-results provide explanations of:

I Why does the standard theory work: Why do log contracts price

variance swaps? Why two log contracts?

I Which variance-related contracts admit semi-parametric

valuations that have become easy to solve by our methods?

Which contracts are still hard to solve semi-parametrically?



Variance swaps

Jump risk

Variation swaps

Pricing variation swaps, with jump risk

Share-weighted variation

Hedging

Discrete Sampling

Answers



Lévy processes

An adapted process (Xu)u≥0 with X0 = 0 is a Lévy process if:

I Xv −Xu is independent of Fu for 0 ≤ u < v

I Xv −Xu has same distribution as Xv−u for 0 ≤ u < v

I Xv → Xu in probability, as v → u

Lévy -Khintchine: There exist a ∈ R, σ ≥ 0, and a Lévy measure ν,

with ν({0}) = 0 and
∫
R(1 ∧ x2)ν(dx) <∞, such that each Xt has CF

EeizXt = etψ(z)

where

ψ(z) := iaz − 1

2
σ2z2 +

∫
R

(eizx − 1− izx1|x|≤1)ν(dx)

Intuition: ν(A) = E(number of jumps of size ∈ A, per unit time).



Time-changed exponential Lévy processes

A share price could be modeled by an exponential Lévy process

Ft = F0 exp(Xt)

Indeed, the case that Xt = at+ σWt gives GBM with drift.

But drawbacks:

I Today’s return has same distribution as yesterday’s.

I Today’s return is independent of yesterday’s.



Time-changed exponential Lévy processes

I Let X be a Lévy process such that EeX1 <∞.

Let X ′u := Xu − u logEeX1 , so that eX
′

is a martingale.

I Let the time change {τt}t∈[0,T ] be an increasing continuous

family of stopping times.

So τ is a stochastic “clock” that measures “business time”:

Calendar time t ←→ Business time τt

We do not assume that τ and X are independent.

I Assume Yt = X ′τt and Ft = F0 exp(Yt).

The time-changed Lévy process Y can exhibit stochastic

volatility, stochastic jump intensity, volatility clustering, and

“leverage” effects.

I By DDS, this family includes all positive continuous martingales.



Variance swaps on time-changed Lévy processes

Our earlier work introduced jumps:

I Variance swaps still admit pricing in terms of log contracts.

I However the correct number of log contracts may not be 2.

I The correct variance swap multiplier depends only on the

dynamics of the Lévy driver X, not on the time change τ .

I Explicit formula for multiplier:

QX,G =
σ2 +

∫
x2dν(x)

σ2/2 +
∫

(ex − 1− x)dν(x)
.

I Whether multiplier is greater or less than 2 depends on skewness

of Lévy measure.

I Effect of discrete sampling
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G-variation of a semimartingale Y

For a general semimartingale Y , we define the G-variation of Y . Let

G(x) = α|x|+ γx2 + o(x2)

be continuous, where α ≥ 0 and γ are constants and:

I Either α = 0 or Y has finite variation. If the latter, then let

Y d
t := Yt−

∑
0<s≤t ∆Ys, and let TV(Y d) be total variation of Y d.

I The o(x2) is for x→ 0. It can be relaxed if Y c = 0,

where Y c is the continuous local martingale part of Y .

Then define the (continuously-sampled) G-variation of Y by

V Y,Gt := αTV(Y d)t + γ[Y c]t +
∑

0<s≤t

G(∆Ys)

(where αTV := 0 if α = 0).



G-variation of a semimartingale Y

More generally, let

G(x) = α|x|+ γx2 + g(x)

where g satisfies any of

g(x) = o(x2),

g(x) = O(|x|r) and r ∈ I ∩ (1, 2] and Y c = 0

g(x) = O(|x|r) and r ∈ I ∩ (0, 1] and Y d = Y c = 0

where

I := {r ≥ 0 :

∫
(0,t]×R

(|x|r ∧ 1)dνY <∞ for all t > 0}

where νY denotes the jump compensator of Y



Motivation for definition of G-variation

For sampling interval ∆n, let us define the discretely-sampled

G-variation of Y by

V Y,G(n)T :=

bT/∆nc∑
j=1

G(Yj∆n − Y(j−1)∆n
)

As n→∞, if ∆n → 0, we have Skorokhod convergence in probability

V Y,G(n) −→ V Y,G.

This motivates our definition of V Y,G, and justifies referring to it as

“continuously-sampled” G-variation. Intuition:

V Y,GT =

∫ T

0

G(dYt)



Examples of G-variation swaps

Canonical example is a variance swap: G(x) = x2. Other examples:

I Total variation swap

G(x) = |x|

I Simple-returns variance swap

G(x) = (ex − 1)2

I Moment swap, for integer p > 1

G(x) = xp

I Absolute moment swap, for real p > 1

G(x) = |x|p



Examples of G-variation swaps

I Capped-movement versions of above: Replace G with

G(min(max(x, a), b))

where −∞ ≤ a < b ≤ ∞. Example: Down semivariance, where

G(x) := (x ∧ 0)2,

is a statistic of interest to portfolio managers.

I Capped-G versions of above: Replace G with

min(G(x),M)

Example: Capped variance

G(x) = x2 ∧M

limits the liability of variance sellers.



Variation swaps on time-changed Lévy processes

We show that:

I G-variation swaps still admit pricing in terms of log contracts.

I However the correct number of log contracts may not be 2.

I The correct variation swap multiplier depends only on G and the

dynamics of the Lévy driver X, not on the time change τ .
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The multiplier

I Let X be a nondeterministic Lévy process, with EeX1 <∞ and

E|X|1 <∞ and
∫
Gdν <∞. Define the multiplier of (X,G) by

QX,G :=
EV X

′,G
1

−EX ′1
=

EV X
′,G

1

logEeX1 − EX1

I Proposition: Let X have generating triplet (A, σ2, ν). Then

QX,G =

∣∣ασ2/2 +
∫
α(ex − 1)dν(x)

∣∣+ γσ2 +
∫
G(x)dν(x)

σ2/2 +
∫

(ex − 1− x)dν(x)
.

Proof: Denominator is sum of −EX1 = −A−
∫
|x|≥1

xν(dx) and

logEeX1 = A+ σ2/2 +

∫
(ex − 1− x1|x|≤1)ν(dx)

Numerator is sum of “(ex-jump) drift”, “Brownian”, and “jump”

contributions to EV X
′,G

1 .



Pricing variation swaps on time-changed Lévy processes

Proposition

If EτT <∞ then

EV Y,GT = QX,GE(−YT ).

Hence the variation swap and QX,G log contracts have the same value.

Proof.

V X
′,G

u +QX,GX ′u is a Lévy martingale, so by Wald’s equation

E(V X
′,G

τT +QX,GX ′τT ) = 0.

By τ continuity, EV Y,GT = EV X
′
τ·,G

T = EV X′,GτT = QX,GE(−YT ).



Proposition: EV Y,G
T = QX,GE(−YT )

Idea of proof: For all fixed times u, by Lévy property of X and V X
′,G,

EV X
′,G

u = QX,GE(−Xu).

Replace u with τT , by a form of the optional stopping theorem:

EV X
′,G

τT = QX,GE(−XτT ).

Exchange variation operator and time-change, by continuity of τ :

EV X
′
τ·,G

T = QX,GE(−XτT ).

as claimed.

In this setting, jumps arise from X jumping, not from clock jumping

(although we allow the clock rate to jump).



Example: Time-changed geometric Brownian motion

Let X be Brownian motion and G(x) = x2. Then

QX,G =
E[X]1
−EX ′1

=
1

1/2
= 2

This recovers the 2 multiplier for all positive continuous martingales.



Example: Time-changed fixed-size jump diffusion

Let X have Brownian variance σ2 and Lévy measure

λ1δc1 + λ2δc2

where δc denotes a point mass at c, and c1 > 0 and c2 < 0. Then

QX,G =
α|λ1(ec1 − 1) + λ2(ec2 − 1)|+ γσ2 + λ1G(c1) + λ2G(c2)

σ2/2 + λ1(ec1 − 1− c1) + λ2(ec2 − 1− c2)
.

In particular, consider G(x) = x2.

Third-order Taylor expansion in (c1, c2) about (0, 0), if σ 6= 0:

QX,G ≈ 2− 2λ1

3σ2
c31 +

2λ2

3σ2
|c2|3,

increasing in absolute down-jump size, decreasing in up-jump size.



Time-changed Kou double-exponential jump-diffusion

Let X have Brownian variance σ2 and Lévy density

ν(x) = λ1a1e
−a1|x|1x>0 + λ2a2e

−a2|x|1x<0

where a1 ≥ 1 and a2 > 0. So up-jumps have mean size 1/a1,

down-jumps have mean absolute size 1/a2.

For G(x) = x2,

QX,G =
σ2 + 2λ1/a

2
1 + 2λ2/a

2
2

σ2/2 + λ1/(a1 − 1)− λ2/(a2 + 1)− λ1/a1 + λ2/a2
.

Third-order Taylor expansion in (1/a1, 1/a2) about (0, 0), if σ 6= 0:

QX,G ≈ 2− 4λ1/σ
2

a3
1

+
4λ2/σ

2

a3
2

,



Example: Time-changed extended CGMY

Let X have the extended CGMY Lévy density

ν(x) =
Cn
|x|1+Yn

e−G|x|1x<0 +
Cp
|x|1+Yp

e−M |x|1x>0,

where Cp, Cn > 0 and G,M > 0, and Yp, Yn < 2. For G(x) = x2,

QX,G =

−CnΓ(2−Yn)GYn−2−CpΓ(2−Yp)MYp−2

CnΓ(−Yn)[GYn−(G+1)Yn+YnGYn−1]+CpΓ(−Yp)[MYp−(M−1)Yp−YpMYp−1]

Expanding the denominator in 1/G and 1/M ,

QX,G ≈ 2× GYn−2 + ρMYp−2

GYn−2(1− 2−Yn
3G + . . .) + ρMYp−2(1 +

2−Yp
3M + . . .)

.

where ρ := CpΓ(2− Yp)/(CnΓ(2− Yn)).



Example: Time-changed VG

The Variance Gamma model takes Y = 0.

ν(x) =
C

|x|
e−G|x|1x<0 +

C

|x|
e−M |x|1x>0

For G(x) = x2, its multiplier is

QX,G =
1/G2 + 1/M2

− log(1 + 1/G) + 1/G− log(1− 1/M)− 1/M

≈ 2× G−2 +M−2

G−2(1− 2
3G + . . .) +M−2(1 + 2

3M + . . .)
.

Note the sign asymmetry between the − 2
3G and the + 2

3M .



Example: Time-changed normal inverse Gaussian (NIG)

Let X have no Brownian component. Let X have Lévy density

ν(x) =
δα

π

exp(βx)K1(α|x|)
|x|

,

where δ > 0, α > 0, |β| < α, and K1 = modified Bessel function of the

second kind and order 1. Then X has cumulant transform

κ(z) = logEezX1 = γz + δ(
√
α2 − β2 −

√
α2 − (β + z)2),

for some γ that we need not specify. Then for G(x) = x2,

QX,G =
κ′′(0)

κ(1)− κ′(0)
=

α2/(α2 − β2)

α2 − β2 − β −
√

(α2 − β2)(α2 − (β + 1)2)
.

Small jump-size limit: take α→∞. Expanding in 1/α,

QX,G ≈ 2− 4β + 1

2α2
.

which is decreasing in β, the parameter which controls the “tilt”.
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Definition

Define the dual or share-weighted G-variation of Y by

Ṽ Y,Gt :=

∫ t

0

eYsdV Y,Gs =

∫ t

0

Fs
F0

dV Y,Gs

where the integrals are pathwise Riemann-Stieltjes.

Share-weighted variation swaps, which pay Ṽ Y,Gt , confer variation

exposure proportional to underlying level F . Motivations:

I Investor may be bullish

I Investor may have view that the market’s downward implied

volatility skew is too steep.

I Investor may be seeking to hedge variation exposure that grows

as Y increases, e.g. in dispersion trading

I Investor may wish to trade single-stock variance without caps



Examples of share-weighted variation swaps

I Share-weighted counterparts exist, for each example of G.

I Canonical example is the gamma swap: G(x) = x2

Standard theory: Gamma swap has same value as 2 contracts on

(FT /F0) log(FT /F0).

I Pre-jump share-weighted G-variation swap uses modified weights:∫ t

0

Fs−
F0

dV Y,Gs

This is equivalent to using share-weighted variation with respect

to the function e−xG(x).



Pricing share-weighted variation swaps

Proposition

Again let G(x) = α|x|+ γx2 + g(x). Under integrability conditions,

EṼ Y,GT = Q̃X,GE((FT /F0) log(FT /F0)).

where the dual multiplier

Q̃X,G :=

∣∣∣ασ2/2 +
∫
α(1− ex)dν(x)

∣∣∣+ γσ2 +
∫
exG(x)dν(x)

σ2/2 +
∫

(1− ex + xex)dν(x)
.

Proof.

Change to “share measure” P̃ where dP̃u/dPu = expX ′u.

Apply unweighted result to X̃ := −X and G̃(x) := G(−x).



Share-weighted variation swaps, with jump risk

We have shown that, for generalized variation,

in the presence of jump risk,

I Share-weighted G-variation swaps still admit pricing in terms of

F logF contracts.

I However the correct number of F logF contracts may not be 2.

I The correct share-weighted variation swap multiplier depends

only on G and the dynamics of the Lévy driver X, not on the

time change τ .



Skewness impact depends on the contract

I QX,G − 2 has same sign as EV X
′,G

1 − 2E(−X ′1) =∫ (
− x3

3
− x4

12
+O(x5)

)
dν(x) for G(x) = x2

∫ (
2x3

3
+
x4

2
+O(x5)

)
dν(x) for G(x) = (ex − 1)2

I Q̃X,G − 2 has same sign as EṼ X
′,G

1 − 2E(X ′1e
X′1) =∫ (

x3

3
+
x4

6
+O(x5)

)
dν(x) for G(x) = x2

∫ (
− 2x3

3
− x4

4
+O(x5)

)
dν(x) for G(x) = e−xx2

∫ (
4x3

3
+

11x4

6
+O(x5)

)
dν(x) for G(x) = (ex − 1)2

∫ (
x3

3
+
x4

3
+O(x5)

)
dν(x) for G(x) = e−x(ex − 1)2



Multipliers of empirically calibrated processes

Variance Simple variance Third moment

X Data 1 Ft Ft− 1 Ft Ft− 1 Ft Ft−

CGMY Jun 2.37 1.81 2.70 1.62 1.53 1.85 -1.85 -0.42 -2.11

CGMY Sep 2.17 1.87 2.33 1.76 1.62 1.89 -0.61 -0.33 -0.65

CGMY Dec 2.13 1.88 2.27 1.78 1.63 1.89 -0.45 -0.31 -0.48

VG Jun 2.10 1.91 2.20 1.83 1.69 1.92 -0.32 -0.25 -0.34

VG Sep 2.09 1.92 2.18 1.84 1.72 1.92 -0.28 -0.23 -0.30

VG Dec 2.10 1.91 2.21 1.82 1.67 1.91 -0.33 -0.27 -0.34

NIG Jun 2.12 1.89 2.25 1.79 1.63 1.90 -0.39 -0.31 -0.42

NIG Sep 2.11 1.90 2.22 1.81 1.66 1.91 -0.35 -0.28 -0.36

NIG Dec 2.10 1.90 2.21 1.82 1.67 1.91 -0.33 -0.27 -0.35
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Perfect hedging with two jump sizes

Let X have jump sizes c1 > 0 and c2 < 0 and zero Brownian part, and

piecewise constant paths:

ν = λ1δc1 + λ2δc2

where λ1 := (1− ec2)λ and λ2 := (ec1 − 1)λ, for arbitrary λ > 0.

Then

QX,G log(F0/FT ) +

∫ T

0

qX,G

Ft−
dFt = V Y,GT .

where qX,G := (c2G(c1)− c1G(c2))/(c2(ec1 − 1) + c1(1− ec2)).

So replicate V Y,GT by holding:

I QX,G log contracts, statically

I qX,G/Ft− shares, dynamically
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Intuition

Does decreasing the sampling frequency tend to increase or decrease

the expectation of realized variance? Intuition:

Consider 1 long sampling period vs. 2 shorter sampling periods.

With log-returns of R1 and R2 in the two periods,

the more-frequently-sampled realized variance is

R2
1 +R2

2

The less-frequently-sampled realized variance is

(R1 +R2)2 = R2
1 +R2

2 + 2R1R2

So coarser sampling adds

2R1R2

to the realized variance.



Intuition

I The expected impact of less sampling is

2E(R1R2) = 2ER1ER2 + 2Cov(R1, R2)

I If R would be martingale increments, E(R1R2) would vanish.

Indeed, realized variance of a martingale M is perfectly

replicable, continuously

M2
T = M2

0 +

∫ T

0

2Mt−dMt + [M ]T

or discretely

M2
tN = M2

0 +
∑

2Mtn(∆Mtn) +
∑

(∆Mtn)2

I But due to taking logs, E(R1R2) > 0 typically.



Discrete sampling

Let 0 = t0 < t1 < · · · < tN = T . Write ∆nZ := Ztn+1
− Ztn .

If EτT <∞ and τ and X are independent then

E
N−1∑
n=0

(∆nY )2 = E[Y ]T +

N−1∑
n=0

(E∆nY )2 +

N−1∑
n=0

Var(E(∆nY |τ)).

Proof: Mt := Yt − τtEX1 is a martingale. Sum the following over n:

E(∆[Y ]) = E(∆[M ]) = E(∆M)2 = E(∆Y − (∆τ)EX1)2

= E(∆Y − E(∆Y |τ))2 = E(Var(∆Y |τ))

= Var(∆Y )−Var(E(∆Y |τ))

= E(∆Y )2 − (E∆Y )2 −Var(E(∆Y |τ)).

Hence discrete sampling increases variance swap values. Premium

depends on squared spreads of log contracts, and Var(E(∆Y |τ)).
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Why does standard theory work

I Why do log contracts price variance swaps?

Because, if F is an exponential Lévy process, then

logF and [logF ]

are both Lévy processes.

So the ratio Q of their “drifts” gives their relative price.

This property survives under continuous time change –

and such time changes generate all continuous positive

martingales.

I Why two log contracts?

Because − log(GBM) has drift 1/2. So the drift ratio is 2.



Extension to jumps

The drift-ratio reasoning still holds, but with a different ratio.

Variance swap value = a multipler (Q) times log contract value.

True for all time-changed Lévy processes. Arbitrary stochastic clock,

arbitrary correlation. The Q does not depend on the clock.

I For continuous underlying paths, Q = 2.

I In the presence of negatively skewed jump risk,

Q > 2

In that case, quotations based on a 2 multiple (including VIX)

would underprice the continuously-sampled variance, and

typically furthermore underprice the discretely-sampled variance.



Extension to other contracts

Let G(x) = α|x|+ γx2 + o(x2).

I By same techniques, we price a G-variation swap which pays

VT = αTV(Y d)T + γ[Y c]T +
∑

0<s≤T

G(∆Ys)

(subject to conditions on G, Y ), because Vt is Lévy if Y is.

I By same techniques, we price share-weighted G-variation:

Ṽ Y,Gt :=

∫ t

0

Fs
F0

dV Y,Gs

in terms of an FT logFT contract, via measure change.

I Under further conditions, can price volatility derivatives paying

h([Y ]T ).

Different techniques needed, because h([Y ]t) may not be Lévy


	Variance swaps
	Jump risk
	Variation swaps
	Pricing variation swaps, with jump risk
	Share-weighted variation
	Hedging
	Discrete Sampling
	Answers

