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Introduction: The Heston Model

dS; = pSedt + / Vi Se (pd W + /1 — p2dW?),
dVe = k(0 — Vi) dt + e/ Ve AW},

where
» W} and W2 independent scalar Wiener processes

» u, k, 6 and € are positive constants

» pe(—1,1)

» S price process of underlying variable (e.g. stock index,
exchange rate)

» V variance process.
Heston (1993), Cox, Ingersoll & Ross (1985), Feller (1951)
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Properties of V

» Vi >0 (assuming Vy > 0).
> Let
v = 4kf/e?,

Then

» If v > 2, then V is strictly positive.
» If v < 2, then the zero boundary is attainable and
instantaneously reflecting.

» Attainability of zero boundary and reflection property are
major obstacle in computational treatment.

» v < 2 is relevant for foreign exchange and long-dated
interest-rate markets (Andersen 2008).

Here: focus on attainable zero boundary case, in particular v < 1.
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Modifications of Euler-Maruyama Scheme

Extend vector fields to negative domain. e.g.
» Partial truncation (Delbaen and Deelstra 1998)

Vipor = Ve, + (0 — Vi) + e AWE VT

» Reflection (Bossy and Diop 2007)

Vipr = [V, | + hi(0 — | Vs, ) +eAWL Y Vs -

» Full truncation (Lord, Koekoek & Van Dijk 2006)

Vipor = Ve, + (0 — VD) +cAWE V.

Full truncation works well, but properties (e.g. error) are difficult
to derive.
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Transition Probability for V

P(Ve < x | Vo) = Fa(n)(x - n(t)/ exp(—~t)),

where

> F,2(n) non-central chi-squared distribution function with v
degrees of freedom and non-centrality parameter A

e M2 & (\/2y 24j-1

— v —§ 2
Fem(e) = v/2 L j12IT (v /2 + ) / e e,
J:

> o= 4/&9/&?2,

. 4k exp(—kt)
g n(t) e (17exp(71~ct))y
>\ = Von(t).
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Properties of Chi-Square Distribution
» Dealing with Non-Centrality

2 2
XV(A) = Xv42N>

where N is Poisson distributed with parameter \/2. (Johnson
1959, Glasserman 2003)
» Divisibility of Chi-Squared Distribution: Assume
» Y1, Yo, ...,, Yon, Z independent,
» Y; standard Normally distributed, i =1, ..., 2N,
» Z x2-distributed.

Then
2N

Z Y2+ Z ~xiion-
i=1
Questions:
» How to simulate a 2 random variable for non-integer v < 17
> Is there a representation for a x?2 variable with non-integer
v < 1 similar to the integer degrees of freedom case?
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Generalized Gaussian Distribution

Definition: A generalized N(0,1, g) random variable, for g > 1,
has density

- q . _Liya
fN(O,l,q)(X) = 21/q+1r(1/q) exp( 2|X| )7
where x € R and I'(-) is the standard gamma function.

Note that for g = 2, we recover the Normal distribution.

(Gupta & Song 1997, Song & Gupta 1997, Sinz, Gerwinn &
Bethge 2009, Sinz & Bethge 2008)
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Representation of Chi-Square by Generalized Gaussian

Theorem:

Suppose X; ~ N(0,1,2q) are independent identically distributed
random variables for i = 1,...,p, where g > 1 and p € N. Then

we have
P 2
129 .2
Z'X" Xp/q-
i=1

Proof: Calculate density.
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Generalized Marsaglia Polar Method

Theorem:

Suppose for some q € N that Ui,...,U; are independent
identically distributed uniform random variables over [—1,1].
Condition this sample set to satisfy the requirement |U|lq < 1,
where ||U||q is the g-norm of U = (Ui,...,Uy). Then the q
random variables generated by U - (—2log||U||)Y/9/||U||q are
independent N(0, 1, q) distributed random variables.

Proof: Calculate density.

Remark: g = 2: Marsaglia's Polar Method for Normal distribution.
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Summary: Algorithm

Assume v = 5 with p and g natural numbers (no loss of
generality). To produce an exact Xf)/q()\) sample:

1. Generate 2qg independent uniform random variables over
[—1,1]: U= (Ux,..., Uxy).

2. If ||U]l2qg < 1 continue, otherwise repeat Step 1.

3. Compute Z = U - (—2log ||UH§Z)1/2‘7/HUH2C,. This gives 2q
independent N(0, 1,2q) random variables Z = (Z1,.. ., Zoq).

4. Compute leq +-+ qu ~ X/2>/q()‘)'
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Probability of Acceptance

Probability of acceptance in each attempt:

pm = <F(1/2q)>2q

2q

» g = 1: probability of acceptance is 0.7854 (sample from
Gaussian distribution)

» As g — oo, we have py; — e77 = 0.5615, where v is the
Euler-Mascheroni constant.

» In each accepted attempt, 2q independent generalized
Gaussian variables are generated, of which p < g are used to
generate one X[2)/q variable.

» Expected number of attempts to generate 2q/p independent
X,%/q variables is

1/py € [1.2732, 1.7809].
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Comparison with Acceptance-Rejection Method
Ahrens & Dieter: acceptance-rejection method with mixture of
prior densities

> (p/2q)xP/29=1 on [0, 1] with weight e/(e + p/2q),
> exp(1 — x) on [1,00) with weight (p/2q)(e + p/2q).

» Expected number of steps to generate 2q/p independent X/2J/q
variables is /2
p/2q +e
2q9/p) ——————.
(2a/p) p/2qT(p/2q)e
This is

> larger than expected number of steps in generalized Marsaglia
method for all p/q < 1.
» unbounded.
» Computational effort (CPU time): generalized Marsaglia
method compares very favourably with acceptance-rejection
method (see overleaf).
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CPU Time vs Degrees of Freedom — 1 Digit

CPU time vs degrees of freedom
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CPU Time vs Degrees of Freedom — 3 Significant Digits

CPU time vs degrees of freedom
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Andersen’s Distribution Approximation

> If \A/tn is large:
th+1 = (2 + bZ)2 ’

where Z ~ N(0,1).
> If V;, is small: replace true density with mixture of Dirac delta
function and exponential density

pd(0) + (1 — p)Bexp(—PBx),

where §(0) is the Dirac delta function and p and 3 are
constants.

Parameters are chosen to match expected value and variance.
(Andersen 2008)
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Simulating S

Recall

dS; = pSidt + py/ Vi St dWE + /1 — p2\/V; St dW2,

dV; = k(0 — V) dt + e/ Ve dW}.

Given th+1 — th
Normal with mean

and fttnm-l Vs ds, the Iog return |0g(5tn+1/5tn) is

pro

P pr 1, [t
(= =) (tns1 = tn) + = (Vi = Vi) + (- = 3) /t Vs ds,

and variance
tht1
(1 —p2)/ Vs ds.
tn

(Broadie & Kaya 2006)
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Trapezoidal Rule

Task: Simulate (V;,,, — V¢, [ Vs ds)
» Laplace transform of fti"“ Vs ds given V; ., and V;, (Pitman
& Yor 1982, Broadie & Kaya 2006)

» Representation as infinite sums and mixtures of independent
Gamma-distributed random variables (Glasserman & Kim
2009)

» Trapezoidal rule (Andersen 2007): approximation of time
integral by

1
3 (Vi Vi) (b1 — o)

Require martingale: e*”(t"“*t")E[Sth‘(th, Stn)] =S
~> adjustment by multiplicative factor

eXp(KO(tn+1 - tn) + Kl th)'
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Test Cases

Case | Case ll

€ 1 0.9
K 0.5 0.3
0 -0.9 -0.5
T 10 15

V(0), & 004  0.04
4r0/c2  8/100 48/810

Table: Test cases from Andersen. In all cases S(0) = 100.

Test cases are “challenging and practically relevant”
» Case | representative of long-dated FX option market,

» Case Il representative of long-dated interest-rate option
market.

(Andersen 2008, p. 26.)
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Numerical Results Case |: Error and Sdev

h Andersen Marsaglia
Strike 100
1 0.2211 (0.012) -0.2374 (0.013)
1/2 0.1164 (0.013) -0.0707 (0.013)
1/4 0.0143* (0.013) -0.0440 (0.013)
1/8 -0.0277* (0.013) -0.0050* (0.013)
1/16 0.0162* (0.013) 0.0019* (0.013)
Strike 140
1 -0.0883 (0.002) -0.0283 (0.002)
1/2 -0.0274 (0.003) -0.0121 (0.002)
1/4 -0.0013 (0.003) -0.0048 (0.003)
1/8 0.0047 (0.003) -0.0011 (0.003)
1/16 0.0018 (0.003) 0.0015 (0.003)
Strike 60
1 0.0317* (0.025) -0.1234 (0.025)
1/2 0.0345* (0.025) -0.0556* (0.025)
1/4 0.0111* (0.025) -0.0388* (0.025)
1/8 0.0407* (0.025) 0.0120* (0.025)
1/16 0.0284* (0.025) 0.0003* (0.025)
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Numerical Results Case Il: Error and Sdev

h Andersen Marsaglia
Strike 100
1 -0.4833 (0.042) -0.1404 (0.042)
1/2 -0.0400* (0.046) -0.0264* (0.044)
1/4 -0.0231* (0.044) 0.0217* (0.048)
1/8 0.0807* (0.045) -0.0553* (0.052)
1/16 -0.0026* (0.042) 0.0521* (0.046)
Strike 140
1 -0.3082 (0.036) -0.0926* (0.036)
1/2 0.0515* (0.040) 0.0029* (0.037)
1/4 -0.0016* (0.038) 0.0207* (0.043)
1/8 0.0740* (0.039) -0.0327* (0.047)
1/16 0.0069* (0.035) 0.0509* (0.040)
Strike 60
1 0.1180 (0.048) -0.0379* (0.049)
1/2 0.1349 (0.052) -0.0036* (0.050)
1/4 -0.0066* (0.050) 0.0290* (0.054)
1/8 0.0809* (0.052) -0.0650* (0.058)
1/16 -0.0170* (0.049) 0.0492* (0.052)
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Numerical Results

» Generalized Marsaglia method compares very favourably with
Andersen’s method in terms of efficiency (average CPU time
over all steps): it is two times faster than Andersen’s method
in case 1 and uses 20% less CPU time in case 2.

» Convergence rate in Andersen’s method unknown.

» Generalized Marsaglia method has advantage of simulating
the chi-square distribution exactly.

Positive Stochastic Volatility Simulation, Toronto, June 2010



Conclusion

» Derive representation of a chi-square random variable as sum
of powers of independent generalized Gaussian random
variables.

» Prove a new method — the generalized Marsaglia method — for
sampling generalized Gaussian random variables.
» Establish a new method to sample a chi-square distributed

random variable, and thus to simulate the Cox—Ingersoll-Ross
model exactly and efficiently.

» Establish a new method to simulate the Heston volatility
model in cases that are “challenging and practically relevant”
(Andersen 2008 p. 26).

» Method is efficient, robust and and easy to implement.
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