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Donsker’s theorem

I Given an i.i.d. sequence of d-dimensional random variables
ξ1, . . . , ξn with E[ξ1] = 0 and cov[ξ1] = In.

I Grid: ∆t B T/n, btc B sup {k∆t | k∆t ≤ t},
dte B inf {k∆t | k∆t > t}.

I W (n)
t B


∑k

i=1

√
∆tξi , t = k∆t ,

t−btc
∆t W (n)

dte + dte−t
∆t W (n)

btc , else.

I Then W (n)
· converges weakly to the Brownian motion B· in

C([0,T ];Rd).
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Approximation of SDEs

Consider two SDEs

I dXt = V0(Xt )dt +
d∑

i=1

Vi(Xt ) ◦ dB i
t

I dX (n)
t = V0(X (n)

t )dt +
d∑

i=1

Vi(X
(n)
t ) ◦ dW (n)

t

Problem

Is it true that X (n)
· converges weakly to X· on the pathspace if W (n)

is a cubature formula on Wiener space, i.e., is it true that for
(bounded, continuous) functionals f on the path-space:

E
[
f(X (n))

] n→∞
−−−−→ E[f(X)]?
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Approximation of SDEs – 2

Program
I Show weak convergence of the truncated signature of the

cubature formula to the signature of the Brownian motion.
(Donsker’s theorem)

I Continuity of the solution map of the SDE in the driving signal
in rough path sense implies weak convergence on the SDE
level.

I Immediate extension to convergence of the flows (more
complicated when using martingale problem approach).



Introduction A Donsker theorem for cubature on Wiener space Pathwise convergence References

Approximation of SDEs – 2

Program
I Show weak convergence of the truncated signature of the

cubature formula to the signature of the Brownian motion.
(Donsker’s theorem)

I Continuity of the solution map of the SDE in the driving signal
in rough path sense implies weak convergence on the SDE
level.

I Immediate extension to convergence of the flows (more
complicated when using martingale problem approach).



Introduction A Donsker theorem for cubature on Wiener space Pathwise convergence References

Approximation of SDEs – 2

Program
I Show weak convergence of the truncated signature of the

cubature formula to the signature of the Brownian motion.
(Donsker’s theorem)

I Continuity of the solution map of the SDE in the driving signal
in rough path sense implies weak convergence on the SDE
level.

I Immediate extension to convergence of the flows (more
complicated when using martingale problem approach).



Introduction A Donsker theorem for cubature on Wiener space Pathwise convergence References

Trees

I Assume that ξi is discrete, taking values in {ω1, . . . , ωm}.

I X (n)
k∆t = X (n)

k∆t (ωi1 , . . . , ωik ) with i1, . . . , ik ∈ {1, . . . ,m}

I Obtain a tree for X (n).
I In general, the tree is non-recombining.

Question

Can we get the price of a path-dependent option E[f(X·)] as a limit
for n → ∞ of approximations E[f(X (n)

∆t ,X
(n)
2∆t , . . . ,X

(n)
T )]?
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Idea of cubature on Wiener space

Consider a stochastic process WD with paths of bounded variation
and approximate

E[f(XT )] ≈ E
[
f
(
XDT

)]
,

where

Xt = X0 +

∫ t

0
V0(Xs)ds +

d∑
i=1

∫ t

0
Vi(Xs) ◦ dB i

s , (1)

XDt = X0 +

∫ t

0
V0(XDs )dh(s) +

d∑
i=1

∫ t

0
Vi(XDs )dWD,i

s . (2)

I XD is the solution of a random ODE that can be solved using
classical ODE schemes.

I For ease of notation, we ignore the drift part from now on.
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Signature of a path

Definition

Let x : [0,T ]→ Rd be a continuous path. The truncated signature
Sm(x) is the collection of the iterated integrals

Sm(x)0,t =

(∫
0≤t1≤···≤tk≤t

dx i1
t1
· · · dx ik

tk

∣∣∣∣∣∣ k ≤ m, (i1, . . . , ik ) ∈ {1, . . . , d}k
)
.

Remark
I If x has bounded variation, the integral is the Stieltjes integral,

if x is a Brownian motion, it is the Stratonovich integral.
I Sm(x) has values in the free step-m nilpot. Lie group Gm(Rd).
I Scaling: Sm(B)0,t ∼ δ√t (Sm(B)0,1) B(√

tk
∫

0≤t1≤···≤tk≤1 ◦dB i1
t1
· · · ◦ dB ik

tk

)
.
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Cubature formulas on Wiener space

Definition
A cubature formula on Wiener space of degree m is a continuous
process W with paths of bounded variation such that
E[Sm(W)0,1] = E[Sm(B)0,1].

Example
I Classical cubature in the sense of Lyons and Victoir: W takes

finitely many values ωi with probability λi , i = 1, . . . , k .
I Wt B tB1, 0 ≤ t ≤ 1. (Order m = 3, Wong-Zakai)
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The Ninomiya-Victoir scheme

I Z j
k independent N(0, 1)

I XDtk = exp
(

∆tk
2 V0

)
exp

(√
∆tk Z1

k V1

)
· · ·

· · · exp
(√

∆tk Zd
k Vd

)
exp

(
∆tk

2 V0

)
XDtk−1

I Reversed order with probability 1/2
I Idea: Cubature path always moves parallel to the axes

I Ẇ i
s =


1/ε, s ∈ [0, ε/2], i = 0,
Z i/ε, s ∈]ε/2 + (i − 1)ε, ε/2 + iε], i > 0,
1/ε, s ∈]1 − ε/2, 1], i = 0,
0, else.

I Cubature method of degree m = 5
I Reversed order with probability 1/2, ε B 1/(1 + d)

I Individual ODEs can often be computed explicitly
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Weak approximation with cubature on Wiener space

I Given a grid D = {0 = t0 < t1 < · · · < tn = T } with mesh size
|D|, ∆tk B tk − tk−1.

I W(1), . . . ,W(n) independent copies of W , scaled to form
cubature formulas on [0,∆tk ], and concatenated gives a
process WD

t , 0 ≤ t ≤ T .

I Solve the random ODE dXDt =
∑d

i=1 Vi(XDt )dWD,i
t .

Theorem (Lyons and Victoir, Kusuoka 2004)

E[f(XT )] = E
[
f(XDT )

]
+ O

(
|D|(m−1)/2

)
provided that the Vector

fields are smooth and one of the following conditions is satisfied:
I f is smooth,
I f is Lipschitz, the vector fields satisfy the uniform Hörmander

condition and D is of a certain non-uniform form.
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Donsker theorem for cubature formulas

Given a cubature formula on Wiener space W of degree m.

Definition
Donsker’s theorem in rough path topology holds for W if for any
sequence Dn of grids on [0,T ] with |Dn | → 0, any 1/3 < α ≤ 1/2
and any continuous functional f : C0,α−Höl

(
[0,T ]; G2(Rd)

)
→ R we

have:
E

[
f
(
S2(WDn )0,·

)]
−−−−→
n→∞

E [f(S2(B)0,·)] .

Remark
I Non-uniform grids required by Kusuoka’s results.
I SN(WD) is usually not piecewise geodesic.
I Continuity of the Lyons lift S2(B) 7→ SN(B) (and similarly for

WD) implies result for SN, N ≥ 2.
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Random walks in G2(Rd)

I Grid Dn = {0 = t0 < · · · < tn = T }, cubature formula W .
I G2(Rd) ⊂ Rd ⊕ (Rd)⊗2, ξ = exp

(∑d
i=1 X iei +

∑
i<j A i,j[ei , ej]

)
a

random variable in G2(Rd)

I X i , A i,j have finite moments of all orders, E[X i] = 0.
I ξ(k) independent copies of ξ, ξn

k B δ√∆tk (ξ(k)), Ξn
0 B 1,

Ξn
k+1 B Ξn

k ⊗ ξ
n
k+1.

I Connection to cubature: choose ξ = S2(W)0,1

Remark
Donsker’s theorem on Lie groups in uniform topology is a classical
result of Stroock and Varadhan, 1973.
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Random walks in G2(Rd)
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I Connection to cubature: choose ξ = S2(W)0,1

Theorem (Breuillard, Friz, Huessman)

Assume that the grids Dn are uniform. Construct stochastic
processes Ξn

t with values in G2(Rd) by Ξn
tk

= Ξn
k and by geodesic

interpolation between the grid points. Then Donsker’s theorem in
rough path topology holds for Ξn

· .
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Donsker’s theorem for random walks

Lemma (Pap 1993)

The sequence Ξn
k , k = 0, . . . , n, n ∈ N, satisfies the central limit

theorem, i.e., Ξn
n converges weakly to the Gaussian measure on

G2(Rd) with infinitesimal generator∑
i<j

E[A i,j]
∂

∂x i,j
+

1
2

∑
i≤j

cov(X i ,X j)
∂

∂x i

∂

∂x j
.

I Tightness in Hölder norm for the geodesically interpolated
random walk Ξ.

I Norm on G2(Rd) is the Carnot-Caratheodory norm ‖·‖.
I Use Kolmogorov’s criterion, i.e., need moment bound.
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Donsker’s theorem for random walks – 2

Lemma
For every p ∈ N there is a constant C independent of k and n such

that E
[∥∥∥Ξn

k

∥∥∥4p
]

= E
[∥∥∥ξn

1 ⊗ · · · ⊗ ξ
n
k

∥∥∥4p
]
≤ Ct2p

k .

Proof.

I ‖x‖ ≤ C
(∣∣∣π1(log(x))

∣∣∣ +
√∣∣∣π2(log(x))

∣∣∣)
I E

[∣∣∣π1(log(Ξn
k ))

∣∣∣4p
]
≤ Ct2p

k by Rosenthal’s inequality (on Rd)

I E
[∣∣∣π2(log(Ξn

k ))
∣∣∣2p

]
≤ Ct2p

k uses the fact that
∣∣∣π2(log(Ξn

k ))
∣∣∣2p

is

a homogeneous polynomial and iterates through the random
walk using the Markov property

�
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Donsker’s theorem for random walks – 3

Theorem
Define Ξn

t , 0 ≤ t ≤ T, by geodesical interpolation of Ξn
k ,

k = 0, . . . , n. Then Ξn converges weakly in α-Hölder topology (for
every 1/3 < α ≤ 1/2) to S2(B) provided that |Dn | → 0.

Remark
This removes the requirement of uniform grids.
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An assumption

Assumption

The cubature measure is supported on finite element paths, i.e., W
takes values in the Cameron-Martin space H and the
Cameron-Martin norm has finite moments of all orders, i.e., ∀k ∈ N

E
[
‖W‖k

H

]
= E

(∫ 1

0

∣∣∣Ẇ(s)
∣∣∣2 ds

)k/2 < ∞.
Remark
This assumption is (up to reparametrization) satisfied for all
classical cubature formulas in the sense of Lyons and Victoir and
holds for all reasonable variations, like the Ninomiya-Victoir
scheme.
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Donsker’s theorem for cubature formulas

Theorem

The signature S2(WDn )0,· converges weakly in α-Hölder topology
to S2(B)0,· for any 1/3 < α ≤ 1/2 provided that |Dn | → 0 and W
satisfies the Assumption.

Corollary

Let hW denote an Rd+1-valued process given by hWt = (h(t),Wt ),
where h : [0, 1]→ R denotes a deterministic Lipschitz function with
h(0) = 0 and h(1) = 1. Again, let hWDn (a process defined on
[0,T ] with values in Rd+1) be defined by proper re-scaling and
concatenating independent copies of hW. Then
S2

(
hWDn

)
0,·
−−−−→
n→∞

S2

(
B̃
)
0,·

weakly in rough path topology, where

B̃t B (t ,Bt ).



Introduction A Donsker theorem for cubature on Wiener space Pathwise convergence References

Pathwise weak convergence of the cubature method

Theorem

Given grids Dn and a cubature formula hWDn as above, define
hDn (t) B hWDn ,0 and let XDn denote the solution to the random
ODE

dXDn
t = V0

(
XDn

t

)
dhDn (t) +

d∑
i=1

Vi

(
XDn

t

)
dWDn ,i

t .

Moreover, let f : C0,α−Höl([0,T ];Rd)→ R be bounded and
continuous. Then

E
[
f
(
XDn
·

)]
−−−−→
n→∞

E[f(X·)].
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Pathwise weak convergence of the cubature method – 2

Remark
I In particular, the theorem holds for all bounded functionals,

which are continuous with respect to the uniform topology.
I Convergence for unbounded continuous functionals can be

obtained by uniform integrability properties (or put-call
parities).

I In the case of barrier option, convergence holds if the payoff
function is continuous except for a set with measure zero on
path space.
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An Asian option in the Heston model
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A barrier option in the Heston model
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Remarks

I For the Asian option, we recover the rate. This is not
surprising, since we integrate the path by the trapezoidal rule,
instead of using a local third order approximation of the
corresponding ODE.

I For the barrier option we fall back to the convergence of the
Euler method.

I Note that we do not use the full path
(
XDt

)
0≤t≤T

but only the

points
(
XDt

)
t∈D

.
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