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Introduction
®0
Wiener-Hopf factorization

Review of the Wiener-Hopf factorization

The characteristic exponent ¥(z) is defined as
E [¢7%] = exp(—t¥(z)),

The Lévy-Khintchine representation for ¥(z):

%22

U(z) = 5~ ipz — / (e — 1 —izal(|z| < 1)) II(dz)
R

We define the extrema processes X; = sup{X; : s < t} and
X, =inf{X; : s <t}, introduce an exponential random variable e(q)
with parameter ¢ > 0, which is independent of the process X;, and use

the following notation for the characteristic functions of X¢(g), X4

¢i(z) =E [eizYe(q):| , ¢,(2)=E {eizge(q)}
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oe
Wiener-Hopf factorization

Review of the Wiener-Hopf factorization

o Random wvariables Ye(q) and Xe(q) — Ye(q) are independent.

- d
° Xog) = Xe(g) = Xe(g)-
o Random variable X o, [Xe(q)] s infinitely divisible, positive

[negative] and has zero drift.
For z € R we have

q

) = ¢7(2)9, (2).
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Well-known examples

WH for Brownian motion with drift

The main idea: since the random variable X o) [X,(,)] is positive
[negative], its characteristic function must be analytic and have no
zeros in C* [C~], where

Ct={z€C : Im(z) >0}, C={z€C : Im(z) <0}, C* =C*UR.

Example:

2
Let Xy = Wi + ut. Then ¥(z) = % —ipz and the equation
g+ ¥(z) = 0 has two solutions

212 =1(p £V p® + 2q)
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WH for Brownian motion with drift

Function ¢/(¥(z) + ¢) can be factorized as

q q

g+ ¥(z) L;—i,uz—i—q
pEVIEH2e  p— Vet +2g
iz 42 +2q iz p— A/ pu?+2g

Thus

—i(p — V1 +2q)
2 —i(p — /p* +2q)
and Ye(q) is an exponential random variable with parameter
B2 +2q — .

¢q(2) =
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Kou model: double exponential jump diffusion model

X, is a Lévy process with jumps defined by
m(x) = ale*bl"’”I{x>0} + agebﬂl{x@}

Then the characteristic exponent is

0222 ap a9 aq a9

U(z) = — iz — — 4 2=
(Z) 2 i by — iz by + iz * by by

Thus equation g + ¥(z) = 0 is a fourth degree polynomial equation,
and we have explicit solutions and exact WH factorization.
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Phase-type distributed jumps

The distribution of the first passage time of the finite state continuous
time Markov chain is called phase-type distribution.

q(r) = poe”“eq

where b; are eigenvalues of the Markov generator £. Thus if X; has
phase-type jumps, its characteristic exponent ¥(z) is a rational
function, and ¢ + ¥(2) = 0 is reduced to a polynomial equation, and
the Wiener-Hopf factors are given in closed form (in terms of the
roots of this polynomial equation).
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Definition of the g-family

Definition

We define the S-family of Lévy processes by the generating triple
(u,0,m), where p € R, o > 0 and the density of the Lévy measure is

e~ fiz eQ202z

7r(x) =C ml{m>o} ar 62m1{w<0}

and parameters satisfy a; > 0, 8; > 0, ¢; > 0 and \; € (0, 3).
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Lévy processes similar to the S-family

The generalized tempered stable family
e O+T a_x

e
m(z) = c. xTI{z>O} + 07W1{1<0}~

can be obtained as the limit as 3 — 07 if we let
_ b _ A _ -1 _ -1 _ 3 —
ca=cf, ce=cf, =, ax=a T, bh=Fh=0

Particular cases:
o \; = Ay — tempered stable, or KoBoL processes

@ ¢ =co, A\ = Ay and (31 = B — CGMY processes
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Computing the characteristic exponent

If ;i € (0,3)\ {1,2} then

0222
U(z) = 5 +ipz 4+

c1 iz Co iz
— —Blag——;1—-X ] ——=—Blas+—;1—X2 ).
b1 ( Y6 1) B2 ( 27 B, 2)

Here B(z,y) = I'(x)T'(y)/T'(x + y) is the beta function.
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Properties

(i) The characteristic exponent ¥(z) is a meromorphic function
which has simple poles at points {—ipy,ifn }n>1, where

pn=PBi(ar +n—1), pn=LP2(az+n—1).

(ii) For ¢ > 0 function g + ¥(z) has roots at points {—i(n,ién}nzl
where ¢, and (, are nonnegative real numbers (strictly positive if
q>0).
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Properties
(iii) The roots and poles of ¢ + ¥(iz) satisfy the following interlacing

condition
i< —Co<—p < -G <0< <pr<ly<py<..

- 14+ =
E[ 72Xe(q):| — Pn
¢ I+ z

(iv) The Wiener-Hopf factors are expressed as convergent infinite

products,
n>1

Alexey Kuznetsov
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Meromorphic Lévy processes

@ A. Kuznetsov, A.E. Kyprianou and J.C. Pardo (2010)
”Meromorphic Lévy processes and their fluctuation identities.’

)

The density of the Lévy measure is defined as

N N
m(x) = Lpsoy Z aie” " +lipc0) Z e’

i=1 =1

where all the coefficients are positive and N < oo, N < co. In the
case N = o0 { N = } the series

iamf’ { > ap“"}
=1 1

=

must converge.
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Main analytical tool: partial fraction decomposition

Lemma

Assume that we have two increasing sequences p = {pp }n>1 and
¢ = {Cn}n>1 of positive numbers which satisfy the following
conditions.

(1) Interlacing condition (1 < p1 < (3 < p2 < ...

(ii) There exists o > 1/2 and € > 0 such that p, > en® for all integer
numbers n.

Then we have the following partial fraction decompositions

1+= g
Pn n
Hiz = P(+Zanp7
n211+47 n>1 Gn +
1+ &
Cn
[I-—% = 1+2bo(Cp)+ D balS,p) {1— }
n211+7n n>1 P+ 2
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Main analytical tool: partial fraction decomposition

where
n Cn
. Ck Cn L=
wiod) = i J1%. wo= (1-9) 12
k=1 Pk k21T G
k#n
1 n Pk 14 B %
0(6:#) G ”—’+°°k1;[1 Cht1 €0) Cn I];[l —
k#n
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Vector /matrix notation

Everything will depend on the coefficients {a,(p, (), an(p, é)}nZO and
{52(¢, 0),bn(C, 5) Yns0. We define for convenience a column vector

a(pv C) = [aO(p7 C)’ al(p7 C)) 32(p7 C)? ]T

and similarly for a(p, ¢), b(¢, p) and b(C, p). Next, given a sequence of
positive numbers ¢ = {(, }n>1, we define the column vector ¥((, z) as
a vector of distributions

(G x) = [Solx), e, G, T

)

where dg(z) is the Dirac delta function at z = 0.
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Distribution of extrema

(i) Forx >0

IED(ye(q) € dx) = a(p»C)T X V(C,x)dx
IEI)(_Xe(q) € d!L‘) a(ﬁ?é)T X \_/(CA,{E)deZ

(i1) ag(p, ¢) (equiv. ag(p,()) is nonzero if and only if 0 is irregular
for (0,00) (equiv. (—o0,0)).

(iii) bo(¢, p) (equiv. bo(é,f))) is nonzero if and only if the process X
creeps upwards. (equiv. downwards)
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Distribution of extrema: notation

Expression in vector /matrix form
P(Xe(g) € dz) =a(p,0)" x ¥(¢, z)dz
is equivalent to
P(Ye(q) = O) = ao(p, C)

and
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Computing roots

Lo L]

a—2 a—1 « nf] a+2

&

T i
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Joint distribution of the fpt and the overshoot

Define 7,7 = inf{t > 0: X; > a}.

Theorem

Define a matriz A = {a; ;}i >0 as

0 ifi=0, j>0
pj — Gi

5 =

Then for ¢ >0 and y > 0 we have

E {e_qT:r]I (ij —c€ dy)} (¢, o) x A x9(p,y)dy.
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Two-sided exit problem

Theorem

Let a > 0 and define a matric B = B(p,(,a) = {b; ;}i j>0 with

e ifi=0,j>1
b 0 ifi>0,j=0
] ﬁ(

) emeG ifi>1, 5> 1

pi + G

and similarly B = B(p, é, a).There ezist matrices C1, Co and Cl, C,
such that for x € (0,a) we have

E, [e—qfiﬂ (XTJ edy; m+ < TO_):|

= [{r((, a—2)7 x C1+ v, 2)T x Cg} x ¥(p,y — a)dy
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Two-sided exit problem

These matrices satisfy the following system of linear equations

C; =A-C,BA C, =A-C,BA
C, =-C,BA C, =-C,BA

This system of linear equations can be solved iteratively with
exponential convergence.
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Parameters

We use a process from the g-family with parameters
(O’, /J, aq, ﬂl, )\1, C1, 2, ﬂg, )\2, 62) = (O’, /J, 1, 15, 15, 1, ]., 15, 15, ].)

Here 1 = E[X;] and o is the Gaussian coefficient, the other
parameters define the density of a Lévy measure, which has
exponentially decaying tails and O(|z|~3/2) singularity at z = 0, thus
this process has jumps of infinite activity but finite varation. We
define the following four parameter sets

Set 1: o =0.5,u=1 Set 2: 0 =05,u=-1
Set 3: o =0,u=1 Set 4: 0 =0,p= -1
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Double-sided exit problem

(i) density of the overshoot if the exit happens at the upper
boundary
d Cart . -
Ale) = g B [ (X Sy o <o)

(i) probability of exiting from the interval [0, 1] at the upper
boundary

falw) = B [e™ 01 (r < 75)]

(iii) probability of exiting the interval [0, 1] by creeping across the
upper boundary

fa(z) = E, {e‘qﬁrﬂ (XT1+ =1; 7'1+ < TJ)]

W-H factorization and distribution of extrema Alexey Kuznetsov



Numerics
0O0@000000

Details of the alrgorithm

o Truncate coefficients a;(p, ) and a;(p, ¢) at ¢ = 200; coefficients
b; (¢, p) and b; (¢, p) at j = 100.

o In order to compute coefficients a;(p, ¢), ai(p, (), b; (¢, p) and
b; (¢, p) we truncate the corresponding infinite products at
k =400

o All the computations depend on precomputing {¢,, én} for
n=1,2,..,400 (solving g + ¥(iz) = 0).

o The code was written in Fortran and the computations were

performed on a standard laptop (Intel Core 2 Duo 2.5 GHz
processor and 3 GB of RAM).

o Time to produce the three graphs for each parameter set: 0.15
sec.
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Double sided exit: ¢ > 0 and positive drift

Figure: Unbounded variation case (o = 0.5): computing the density of the
overshoot fi(x,y) (z € (0,1), y € (0,0.5)), probability of first exit f2(z) and
probability of creeping f3(x) for parameter Set 1, positive drift u =1
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Double sided exit: ¢ > 0 and negative drift

Figure: Unbounded variation case (o = 0.5): computing the density of the
overshoot fi(x,y) (z € (0,1), y € (0,0.5)), probability of first exit f2(z) and
probability of creeping f3(x) for parameter Set 2, negative drift u = —1.
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Double sided exit: bounded variation and positive drift

Lo amw e oo e

Figure: Bounded variation case (o = 0): computing the density of the
overshoot fi(x,y) (z € (0,1), y € (0,0.5)), probability of first exit f2(z) and
probability of creeping f3(x) for parameter Set 3, positive drift u = 1.
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Double sided exit: bounded variation and negative drift

3

N T T

L

Figure: Bounded variation case (o = 0): computing the density of the
overshoot fi(x,y) (z € (0,1), y € (0,0.5)), probability of first exit f2(z) and
probability of creeping f3(x) for parameter Set 4, positive drift u = —1.
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Time changed Lévy processes

Price of the rebate barrier option with the exponential maturity

mx(@,0) = By (17 < e(a)f(X,1)

Define a time-changed process Y; = X1, s > 0, where we assume that
Ty is continuous and independent of X;. Define s to be the first
passage time of process Y above a. Then the price of the option with
the deterministic maturity u is given by

ry (o) =B, [Is <0l (V)] = o [ wx( B[] g 2dg
qo+iR
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