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Wiener-Hopf factorization

Review of the Wiener-Hopf factorization

The characteristic exponent Ψ(z) is defined as

E
[
eizXt

]
= exp(−tΨ(z)),

The Lévy-Khintchine representation for Ψ(z):

Ψ(z) =
σ2z2

2
− iµz −

∫
R

(
eizx − 1− izxI(|x| < 1)

)
Π(dx)

We define the extrema processes Xt = sup{Xs : s ≤ t} and
Xt = inf{Xs : s ≤ t}, introduce an exponential random variable e(q)
with parameter q > 0, which is independent of the process Xt, and use
the following notation for the characteristic functions of Xe(q), Xe(q):

φ+
q (z) = E

[
eizXe(q)

]
, φ−q (z) = E

[
eizXe(q)

]
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Wiener-Hopf factorization

Review of the Wiener-Hopf factorization

Theorem

Random variables Xe(q) and Xe(q) −Xe(q) are independent.

Xe(q) −Xe(q)
d= Xe(q).

Random variable Xe(q) [Xe(q)] is infinitely divisible, positive
[negative] and has zero drift.

For z ∈ R we have
q

q + Ψ(z)
= φ+

q (z)φ−q (z).
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Well-known examples

WH for Brownian motion with drift

The main idea: since the random variable Xe(q) [Xe(q)] is positive
[negative], its characteristic function must be analytic and have no
zeros in C+ [C−], where

C+ = {z ∈ C : Im(z) > 0}, C− = {z ∈ C : Im(z) < 0}, C̄± = C± ∪ R.

Example:
Let Xt = Wt + µt. Then Ψ(z) = z2

2 − iµz and the equation
q + Ψ(z) = 0 has two solutions

z1,2 = i(µ±
√
µ2 + 2q)
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Well-known examples

WH for Brownian motion with drift

Function q/(Ψ(z) + q) can be factorized as

q

q + Ψ(z)
=

q
z2

2 − iµz + q

=
µ+

√
µ2 + 2q

iz + µ+
√
µ2 + 2q

× µ−
√
µ2 + 2q

iz + µ−
√
µ2 + 2q

Thus

φ+
q (z) =

−i(µ−
√
µ2 + 2q)

z − i(µ−
√
µ2 + 2q)

and Xe(q) is an exponential random variable with parameter√
µ2 + 2q − µ.
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Well-known examples

Kou model: double exponential jump diffusion model

Xt is a Lévy process with jumps defined by

π(x) = a1e
−b1xI{x>0} + a2e

b2xI{x<0}

Then the characteristic exponent is

Ψ(z) =
σ2z2

2
− iµz − a1

b1 − iz
− a2

b2 + iz
+
a1

b1
+
a2

b2

Thus equation q + Ψ(z) = 0 is a fourth degree polynomial equation,
and we have explicit solutions and exact WH factorization.
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Well-known examples

Phase-type distributed jumps

Definition
The distribution of the first passage time of the finite state continuous
time Markov chain is called phase-type distribution.

q(x) = p0e
xLe1

where bi are eigenvalues of the Markov generator L. Thus if Xt has
phase-type jumps, its characteristic exponent Ψ(z) is a rational
function, and q + Ψ(z) = 0 is reduced to a polynomial equation, and
the Wiener-Hopf factors are given in closed form (in terms of the
roots of this polynomial equation).
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Definition of the β-family

Definition
We define the β-family of Lévy processes by the generating triple
(µ, σ, π), where µ ∈ R, σ ≥ 0 and the density of the Lévy measure is

π(x) = c1
e−α1β1x

(1− e−β1x)λ1
I{x>0} + c2

eα2β2x

(1− eβ2x)λ2
I{x<0}

and parameters satisfy αi > 0, βi > 0, ci ≥ 0 and λi ∈ (0, 3).
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Lévy processes similar to the β-family

The generalized tempered stable family

π(x) = c+
e−α+x

xλ+
I{x>0} + c−

eα−x

|x|λ−
I{x<0}.

can be obtained as the limit as β → 0+ if we let

c1 = c+β
λ+ , c2 = c−β

λ− , α1 = α+β
−1, α2 = α−β

−1, β1 = β2 = β

Particular cases:
λ1 = λ2 −→ tempered stable, or KoBoL processes
c1 = c2, λ1 = λ2 and β1 = β2 −→ CGMY processes
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Computing the characteristic exponent

Theorem

If λi ∈ (0, 3) \ {1, 2} then

Ψ(z) =
σ2z2

2
+ iρz + γ

− c1
β1

B
(
α1 −

iz
β1

; 1− λ1

)
− c2
β2

B
(
α2 +

iz
β2

; 1− λ2

)
.

Here B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is the beta function.
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Properties

(i) The characteristic exponent Ψ(z) is a meromorphic function
which has simple poles at points {−iρn, iρ̂n}n≥1, where

ρn = β1(α1 + n− 1), ρ̂n = β2(α2 + n− 1).

(ii) For q ≥ 0 function q + Ψ(z) has roots at points {−iζn, iζ̂n}n≥1

where ζn and ζ̂n are nonnegative real numbers (strictly positive if
q > 0).
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Properties

(iii) The roots and poles of q + Ψ(iz) satisfy the following interlacing
condition

...− ρ2 < −ζ2 < −ρ1 < −ζ1 < 0 < ζ̂1 < ρ̂1 < ζ̂2 < ρ̂2 < ...

(iv) The Wiener-Hopf factors are expressed as convergent infinite
products,

φ+
q (iz) = E

[
e−zXe(q)

]
=
∏
n≥1

1 + z
ρn

1 + z
ζn

φ−q (−iz) = E
[
ezXe(q)

]
=
∏
n≥1

1 + z
ρ̂n

1 + z
ζ̂n

.
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Meromorphic Lévy processes

A. Kuznetsov, A.E. Kyprianou and J.C. Pardo (2010)
”Meromorphic Lévy processes and their fluctuation identities.”

The density of the Lévy measure is defined as

π(x) = I{x>0}

N∑
i=1

aie
−ρix + I{x<0}

N̂∑
i=1

âie
ρ̂ix,

where all the coefficients are positive and N ≤ ∞, N̂ ≤ ∞. In the
case N =∞

{
N̂ =∞

}
the series

∞∑
i=1

aiρ
−3
i

{ ∞∑
i=1

âiρ̂
−3
i

}

must converge.
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Main analytical tool: partial fraction decomposition

Lemma

Assume that we have two increasing sequences ρ = {ρn}n≥1 and
ζ = {ζn}n≥1 of positive numbers which satisfy the following
conditions.
(i) Interlacing condition ζ1 < ρ1 < ζ2 < ρ2 < ...

(ii) There exists α > 1/2 and ε > 0 such that ρn > εnα for all integer
numbers n.

Then we have the following partial fraction decompositions

∏
n≥1

1 + z
ρn

1 + z
ζn

= a0(ρ, ζ) +
∑
n≥1

an(ρ, ζ)
ζn

ζn + z
,

∏
n≥1

1 + z
ζn

1 + z
ρn

= 1 + zb0(ζ, ρ) +
∑
n≥1

bn(ζ, ρ)
[
1− ρn

ρn + z

]
,
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Main analytical tool: partial fraction decomposition

where

a0(ρ, ζ) = lim
n→+∞

n∏
k=1

ζk
ρk
, an(ρ, ζ) =

(
1− ζn

ρn

) ∏
k≥1
k 6=n

1− ζn
ρk

1− ζn
ζk

,

b0(ζ, ρ) =
1
ζ1

lim
n→+∞

n∏
k=1

ρk
ζk+1

, bn(ζ, ρ) = −
(

1− ρn
ζn

) ∏
k≥1
k 6=n

1− ρn
ζk

1− ρn
ρk

.
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Vector/matrix notation

Everything will depend on the coefficients {an(ρ, ζ), an(ρ̂, ζ̂)}n≥0 and
{bn(ζ, ρ),bn(ζ̂, ρ̂)}n≥0. We define for convenience a column vector

ā(ρ, ζ) = [a0(ρ, ζ), a1(ρ, ζ), a2(ρ, ζ), ...]T

and similarly for a(ρ̂, ζ̂), b(ζ, ρ) and b(ζ̂, ρ̂). Next, given a sequence of
positive numbers ζ = {ζn}n≥1, we define the column vector v̄(ζ, x) as
a vector of distributions

v̄(ζ, x) =
[
δ0(x), ζ1e−ζ1x, ζ2e−ζ2x, . . .

]T
,

where δ0(x) is the Dirac delta function at x = 0.
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Distribution of extrema

Corollary

(i) For x ≥ 0

P(Xe(q) ∈ dx) = ā(ρ, ζ)T × v̄(ζ, x)dx

P(−Xe(q) ∈ dx) = ā(ρ̂, ζ̂)T × v̄(ζ̂, x)dx.

(ii) a0(ρ, ζ) (equiv. a0(ρ̂, ζ̂)) is nonzero if and only if 0 is irregular
for (0,∞) (equiv. (−∞, 0)).

(iii) b0(ζ, ρ) (equiv. b0(ζ̂, ρ̂)) is nonzero if and only if the process Xt

creeps upwards. (equiv. downwards)
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Distribution of extrema: notation

Expression in vector/matrix form

P(Xe(q) ∈ dx) = ā(ρ, ζ)T × v̄(ζ, x)dx

is equivalent to

P(Xe(q) = 0) = a0(ρ, ζ)

and

d
dx

P(Xe(q) < x) =
∑
n≥1

an(ρ, ζ)ζne−ζnx
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Computing roots
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Joint distribution of the fpt and the overshoot

Define τ+
a = inf{t > 0 : Xt > a}.

Theorem

Define a matrix A = {ai,j}i,j≥0 as

ai,j =


0 if i = 0, j ≥ 0
ai(ρ, ζ)b0(ζ, ρ) if i ≥ 1, j = 0
ai(ρ, ζ)bj(ζ, ρ)

ρj − ζi
if i ≥ 1, j ≥ 1

Then for c > 0 and y ≥ 0 we have

E
[
e−qτ

+
c I
(
Xτ+

c
− c ∈ dy

)]
= v̄(ζ, c)T ×A× v̄(ρ, y)dy.
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3 Distribution of extrema

4 Exit problem for an interval

5 Numerical examples

W-H factorization and distribution of extrema Alexey Kuznetsov 19/30



Introduction β-family Distribution of extrema Two-sided Numerics

Two-sided exit problem

Theorem

Let a > 0 and define a matrix B = B(ρ̂, ζ, a) = {bi,j}i,j≥0 with

bi,j =


ζje
−aζj if i = 0, j ≥ 1

0 if i ≥ 0, j = 0
ρ̂iζj
ρ̂i + ζj

e−aζj if i ≥ 1, j ≥ 1

and similarly B̂ = B(ρ, ζ̂, a).There exist matrices C1, C2 and Ĉ1, Ĉ2

such that for x ∈ (0, a) we have

Ex
[
e−qτ

+
a I
(
Xτ+

a
∈ dy ; τ+

a < τ−0

)]
=
[
v̄(ζ, a− x)T ×C1 + v̄(ζ̂, x)T ×C2

]
× v̄(ρ, y − a)dy
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Two-sided exit problem

These matrices satisfy the following system of linear equations{
C1 = A− Ĉ2BA
Ĉ2 = −C1B̂Â

{
Ĉ1 = Â−C2B̂Â
C2 = −Ĉ1BA

This system of linear equations can be solved iteratively with
exponential convergence.
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3 Distribution of extrema

4 Exit problem for an interval

5 Numerical examples

W-H factorization and distribution of extrema Alexey Kuznetsov 21/30



Introduction β-family Distribution of extrema Two-sided Numerics

Parameters

We use a process from the β-family with parameters

(σ, µ, α1, β1, λ1, c1, α2, β2, λ2, c2) = (σ, µ, 1, 1.5, 1.5, 1, 1, 1.5, 1.5, 1)

Here µ = E[X1] and σ is the Gaussian coefficient, the other
parameters define the density of a Lévy measure, which has
exponentially decaying tails and O(|x|−3/2) singularity at x = 0, thus
this process has jumps of infinite activity but finite varation. We
define the following four parameter sets

Set 1: σ = 0.5, µ = 1 Set 2: σ = 0.5, µ = −1
Set 3: σ = 0, µ = 1 Set 4: σ = 0, µ = −1
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Double-sided exit problem

(i) density of the overshoot if the exit happens at the upper
boundary

f1(x, y) =
d
dy

Ex
[
e−qτ

+
1 I
(
Xτ+

1
≤ y ; τ+

1 < τ−0

)]
(ii) probability of exiting from the interval [0, 1] at the upper

boundary

f2(x) = Ex
[
e−qτ

+
1 I
(
τ+
1 < τ−0

)]
(iii) probability of exiting the interval [0, 1] by creeping across the

upper boundary

f3(x) = Ex
[
e−qτ

+
1 I
(
Xτ+

1
= 1 ; τ+

1 < τ−0

)]
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Details of the alrgorithm

Truncate coefficients ai(ρ, ζ) and ai(ρ̂, ζ̂) at i = 200; coefficients
bj(ζ, ρ) and bj(ζ̂, ρ̂) at j = 100.

In order to compute coefficients ai(ρ, ζ), ai(ρ̂, ζ̂), bj(ζ, ρ) and
bj(ζ̂, ρ̂) we truncate the corresponding infinite products at
k = 400
All the computations depend on precomputing {ζn, ζ̂n} for
n = 1, 2, .., 400 (solving q + Ψ(iz) = 0).
The code was written in Fortran and the computations were
performed on a standard laptop (Intel Core 2 Duo 2.5 GHz
processor and 3 GB of RAM).
Time to produce the three graphs for each parameter set: 0.15
sec.
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Double sided exit: σ > 0 and positive drift

 0

 0.2

 0.4

 0.6
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Figure: Unbounded variation case (σ = 0.5): computing the density of the
overshoot f1(x, y) (x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and
probability of creeping f3(x) for parameter Set 1, positive drift µ = 1
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Double sided exit: σ > 0 and negative drift

 0
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Figure: Unbounded variation case (σ = 0.5): computing the density of the
overshoot f1(x, y) (x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and
probability of creeping f3(x) for parameter Set 2, negative drift µ = −1.
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Double sided exit: bounded variation and positive drift
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Figure: Bounded variation case (σ = 0): computing the density of the
overshoot f1(x, y) (x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and
probability of creeping f3(x) for parameter Set 3, positive drift µ = 1.
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Double sided exit: bounded variation and negative drift

 0
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Figure: Bounded variation case (σ = 0): computing the density of the
overshoot f1(x, y) (x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and
probability of creeping f3(x) for parameter Set 4, positive drift µ = −1.
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Time changed Lévy processes

Price of the rebate barrier option with the exponential maturity

πX(x, q) = Ex
[
I(τ+

a < e(q))f(Xτ+
a

)
]

Define a time-changed process Ys = XTs , s ≥ 0, where we assume that
Ts is continuous and independent of Xt. Define s+a to be the first
passage time of process Ys above a. Then the price of the option with
the deterministic maturity u is given by

πY (y, u) = Ey
[
I(s+a < u)f(Ys+a )

]
=

1
2πi

∫
q0+iR

πX(y, q)E
[
eqTu

]
q−2dq
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