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1 Barrier Option

e Path-dependent options, very popular in foreign exchargets. The
purchaser uses them to hedge very specific cash flows withasionop-
erties but pays a cheaper price than regular options.

e Payoff is dependent on the realized asset path via its [&ed.Figure 1
for up-and-out call option payoft.

e Apart from “out” options, there are also “in” options whichlg receive
a payoff if a certain level is reached, otherwise they expooethless.

e In-Out-Parity for Barrier options: Knock-if Knock-out = Vanilla.

e Put-Call-Symmetry for Barrier Options: Up-and-out ¢&l K, H, r, q, p) =
Down-and-out PWK, S, SK/H, q,r, —p).

e \We consider up-and-out call options in the following.
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Figure 1: Diagram: Payoff of an up and out call options.




2 Literature Review

e Merton (1973): the derivation of the pricing formula for bar options;

e Rich (1994) and Wong & Kwok (2003): a list of pricing formulés
one and multi-asset barrier options both under the GBM freonie

e Gao, Huang & Subrahmanyam (2000): option contracts undeviGB
with both knock-out barrier and American early exercisdusss;

e Zvan, Vetzal & Forsyth (2000): discuss the oscillatory hatiaof the
Crank - Nicolson method for pricing barrier options. Thekwaard Eu-
ler method is applied to avoid unwanted oscillations;

e Griebsch (2008): discusses evaluation of barrier opticceprunder the
Heston model with Fourier transform approach;

e Yousuf (2008, 2009): develops a higher order smoothing reehtor
pricing barrier options under SV without early exercise.



3 Barrier Options - Evaluation under SV

e We follow Heston (1993) assuming the dynamics$ounderRN mea-
sure governed by

dS = (r—q)Sdt+ /vSdZ,,
dv = (kyOy — (Ky + A)v)dt + o+/vdZ,.

e HereS andw are correlated wittE(dZ1dZ5) = pdt.

e Assumes market price of vol. risk Ay/v.



e The price of a barrier optiod’'(S, v, T) at time to maturityr is the

solution to a partial differential equation (PDE) problem.
e \We need to solve the PDE
oC
— =KC — rC,
oT

on the intervaD < 7 < T, where the Kolmogorov operat#¢

vS2 92 N g 02 N o2v 02 o 'S O N
= oV r — —
2 952  P7a5090 T 2 92 V=58

(Ky(0y — v) — )\fu)%.




3.1 Continuously monitored barrier options

e Continuously monitored barrier optiad (S, v, 7): an option which is
monitored all the time between the current titraind the maturity of the
option at timeT'. Note thatr = T — t.

e The option, has the terminal condition
C(S,v,0) = (S — K)™.
e The domain for the up and out call option is
0<S<H, 0<v<oo, 07T

e The boundary conditions for the barrier option without thdyexercise
features are:

C0,v,7) =0; C(H,v,7) =0; lim C,(S,v,7) =0.



The option with early exercise features has the free boyrmardition
C(b(v,7),v,7) =b(v,7) — K, whenb(v,7) < H

whereS = b(v, 7) is the early exercise boundary for the barrier option
at time to maturityr and variance.

There also hold the smooth-pasting conditions
oC oc

lim —=1, lim — =0
S—b(v,7) OS S—b(v,7) QU

In the above case,
cC(S,v,7T)=8—-—K, Vb(v,7) < S < H.
However, if we cannot find &(v, 7) < H then

C(H,v,7) = H — K.



e Technically, for the knock-out event and the exercise datbe well
defined,

— the option contract is defined in a way such that when the pssetfirst
touches the barrier, the option holder has the option teegkercise or
let the option be knocked out.

e Since In this paper we assume the rebate is equal to zero pti@o
should be exercised once the asset price touches the barrier



3.2 Discretely monitored barrier options

e A discretely monitored barrier option is an option which ismrored

only atdiscrete dates< t1 < tx < -+ < tn < T.

e The option has the terminal condition
C(S,v,0) = (S — K)™.
e The domain for the up and out call option is:

S ¢ { (OaH)a T € {T_thT_tN—la”‘ 9T_t1}7
(0, 00), otherwise

and
O<v<oo, 0K T LT
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e The boundary conditions for the barrier option without pagkercise
features are:

C0,v,7) = O0;

C(H,v,7) = 0, Vre{T —tn,---,T —1t1};
Sli_)rgoC(S,v,T) = 0, Vr & {T —tn,--+, T —t1};
lim C,(S,v,7) = 0.

V— 0O

e A discretely monitored barrier option with the early exeecfeature, at
the monitoring times- € {T — tn,--- ,T — t1}, has the free (early
exercise) boundary condition

C(b(v,7),v,7) = b(v,7) — K, whenb(v,7) < H.
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Hereb(v, 7) is the early exercise boundary for the barrier option at time
to maturityT and variance, and satisfies the smooth-pasting conditions

) oC ] oC
lim — =1, Iim — =0
S—b(v,7) OS S—b(v,7) QU

In the above case, we have
cC(S,v,7T)=85—-—K, Vb(v, 7)< S< H
so thatC' (S, v, 7) isknown over0 < S < H.

If there is no suclb(v, 7) then for the same reason as the case for the
continuously monitored optior¢;' (.S, v, 7) must satisfy

C(H,v,7) = H — K.

At all other timesr ¢ {T — tn,--- ,T — t1}, standard American
option free boundary conditions apply.
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4 Method of Lines (MOL) Approach

e The method of lines has several strengths when dealing watinids
options, especially when allowing early exercise features

— Theprice, free boundary, delta andgammaare all found as part of
the computation.

— The method discretises the PDE in an intuitive manner, aredily
adapted to beecond order accurate in time

e The key idea behind the method of lines is to replace a PDE anth
equivalent system of one-dimensional ODEs.

e The system of ODEsis developed by discretising the time derivative
and the derivative terms involving the varianee,

13



e The PDEto be solved is

oC vS?2 9%C N g 02C N o?v 02C
oCc _ .
ar 2 952 P77 8860 T 2 Hu2

oC oC
- - v Ofv - - A e
F(r =@ o+ (su(8y —v) = A0) o

e The computational domain for the problem will depend on {hecdic
Barrier option, for example,

— for a continuously monitored up and out call option, we wdudde:

0< S <S<H,0<v<o0, 0<T<T.
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We discretise according tg, = nAT andv,,, = mAwv, wheren =
1,.... Nym=1,...,M.

C(S, Vpm, 1) = C™ (S),

oC (S, Vm,Tn
V (S, by 1) = 2D OmaTn) gy
0S
We use thestandard central difference scheme
0%C B C’,;';';LH —-2cr +C . 9%°C _ V£+1 - V>

ov? (Av)? " 9S9v 2Av

We use anipwinding finite difference schemeor the first order deriva-

tive term

IN

@R IR

m- “m—1 If

S
V

cr., ., —Ccr .
aC { L Cm iy
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A second order approximation for the time derivative

oC 3 cr — C’,g;b_l n 1 C’,g;b_l — C,,",;'f2
or 2 AT 2 AT .

After taking the boundary conditions into consideratio®, nvust solve
a system of M — 1) second order ODEs if along the line segment
(Vs Tn), S € [So, H] Or S € [So, Smaz] depending on the prop-
erties of the barrier option fath = 1, .., M — 1 and fixedr,,.

We then solve the ODEs for increasing values afising the latest avail-
able estimates fo€?, . ,, C7. _,, V", , andV "

m—1’ m—1-

We iterate until the price profile converges to a desired lefvaccuracy.
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Figure 2: One sweep of the solution scheme omthe 7 grid. The stencil
for the typical pointo|is displayed in Figure 3.
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Figure 3: Stencil for the typical grid poinod | of Figure 2. The stencil for
Cy depends oCy,_,,Cr,Cr, ., Cr=1,CP=2).
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e The generic first order form of the ODE

dCm
Delta = =V",
dS m
dv™m
Gamma d;’n = A, (S)C" + B,,(S)V.» 4+ P"(S),

where P (S) is also a function ofC},_,, C?._,, V.». .V

m—1"
Cn—l Cn—z
m ! m )
e We solve the above system using the Riccati transform.

e The Riccatl transformation

Cn(8) = B (S)V, (S) + Wi (S).
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e WhereRR andW are solutions to the initial value problems

% =1 — Bn(S)Rm — Am(S)(Rm)?, Rum(So) = 0,
dZVS#% = —Am(S)Rm(S)W7 — R (S)PR(S), Wi (So) = 0.

o Given R andW we try to find V. by solving

dS
backward subject to an terminal condition which dependshentop-

erties and the specifications of the barrier options.

DV — A () (Bn(S)V+ WIA(S)) + B (S) Vi + P (S),

20



* Barrier
S"=5b6(v, D) — — —
? «—— Early ex. condn. satisfied.

//f// A

Figure 4: Solving for the option prices alonda,,,, 7,) line.
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e Continuously monitored barrier options without early oppor-
tunities, using the fact tha®"™ (H) = 0 we obtain from the Riccati
transform that the terminal condition is

wr(H)
R, (H)’

Vi(H) = -

and then integrate the equation > from S = Ht0 S = Sp.

e Continuously monitored barrier option with early exeromg®ortunity
we integrate the equation f8% " andR,,, from S t0 S;,,4, and mon-
itor the function

¢(S) = Rm(S) + W (S) — (S — K).

22



o If (S*) = 0 for someS* € (So, H) thenS* is the early exercise
boundaryb(v,,, 7,) = b* atthe grid poin{(v,,,, 7).
— Onced] Is found we integrate the equation fbf> backward fromb?
toward Sy subject to the terminal condition

Vr) =1.

e If ¢(5) has no zero ifSy, H) then there is no early exercise below
the barrier and we solve the equation 1f subject to

H—-K-W"(H)
R, (H)
— In fact, at any time to maturity, if the asset hits the barridif, then the

option will be exercised, namelg/(H,v,7) = H — K, according to
the Riccati transform we have

Vi (H) =

Cr(H) = R (H) V2 (H) + W (H) = H — K.
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5 Numerical Examples

Parameter Value SV Parameter Value
r 0.03 0 0.1
q 0.05 K 2.00
T 0.5 o 0.1
K 100 v 0.00
p +0.50 H 130

Table 1: Parameter values used for the barrier option. Tduhastic volatil-
ity (SV) parameters are those used in Heston’s original pape
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p = —0.50,v = 0.1 S
Method (N, M, Sps) 80 90 100 110 120

MOL (50,100,1140) 0.9045 1.8807 2.5978 2.4859 1.4858
MOL (100,200,6400) 0.9044 1.8781 2.5908 2.4769 1.4/82
FD (200, 100, 200) 0.9029 1.8778 2.5903 2.4760 1.4775

MC (400, 20) 0.9355 1.9579 2.7407 2.6706 1.6773
MC upper bound 0.9389 1.9628 2.7464 2.6762 1.6820
MC lower bound 0.9321 1.9530 2.7351 2.6649 1.6726

Table 2: Prices of the continuously monitored barrier aptathout early
exercise features computed using method of lines (MOL)tefidifference
(FD) and Monte Carlo simulation (MC). Parameter values arergin Table
1, withp = —0.50 andv = 0.1.
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p = —0.50,v = 0.1
Method (N, M, Sps)

80

S
90 100

110 120

MOL (50,150,1140)
MOL (100,200,2440)
MOL (100,200,6400)
MOL (200,400,9100)
MC (100, 20, 50)
MC upper bound

MC lower bound

1.4009
1.4012
1.4012
1.4015

3.9350 8.2981
3.9364 8.3003
3.9363 8.3003
3.9371 8.3014

1.3994 3.9238 8.2302

1.4058

3.9347 8.2454

14.4015 21.8229
14.4033 21.8219
14.4032 21.8216
14.4037 21.8201
14.1086 20.9401
14.1261 20.9568

1.3930 3.9129 8.2151 14.0909 20.9234

Table 3: Prices of the continuously monitored barrier apuoth early ex-
ercise features computed using method of lines (MOL) and t®@marlo
simulation (MC). Parameter values are given in Table 1, wite= —0.50

andv = 0.1.
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p = —0.50,v = 0.1 S
Method (IN, M, Sps) 80 90 100 110 120

MOL(50,100,1140) 1.0764 25173 4.0895 4.9894 4.8291
MOL (100,200,6400) 1.0807 2.5289 4.1116 5.0235 4.8706
COS(100,200,100) 1.0809 2.4871 4.0454 4.9779 4.8646

MC (400, 20) 1.0780 2.5257 4.1033 5.0166 4.8605
MC upper bound 1.0834 2.5339 4.1135 5.0279 4.8718
MC lower bound 1.0726 2.5175 4.0930 5.0054 4.8492

Table 4: Prices of the discretely monitored barrier optiathaut early exer-
cise features computed using method of lines (MOL), Fol®sine expan-
sion (COS) and Monte Carlo simulation (MC). Parameter \&are given in
Table 1, withp = —0.50 andv = 0.1.
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p=—0.50,v =0.1 S

Method (INV, M, Sps) 80 90 100 110 120
MOL(50,100,1140) 1.4008 3.9339 8.3010 14.4446 22.0389
MOL (100,250,2400) 1.4012 3.9364 8.3025 14.4182 21.8719
MOL (150,250,6400) 1.4014 3.9368 8.3028 14.4157 21.8615

MC (100, 20, 50) 1.4002 3.9338 8.2967 14.4285 21.9274
MC upper bound 1.4066 3.9449 8.3123 14.4473 21.9459
MC lower bound 1.3938 3.9228 8.2810 14.4097 21.9089

Table 5: Prices of the discretely monitored barrier optiotihwarly exercise
features computed using method of lines (MOL) and MontedCanulation
(MC). Parameter values are given in Table 1, wite= —0.50 andv = 0.1.
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Price profile continuous Barrier without early exercise
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Figure 5. Price profile of a continuously monitored up-amnd-call option
without early exercise opportunities.
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Price profile discrete Barrier without early exercise

C(Syv,T)
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Figure 6: Price profile of a discretely monitored up-and-@alt option with-
out early exercise opportunities.
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Early exercise boundary of continuous barrier option

Figure 7: Early exercise boundary of a continuously moeionp-and-out

call option.
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Early exercise boundary of Discrete Barrier option
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Delta profile continuous Barrier without early exercise
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Figure 9: Delta profile of a continuously monitored up-and-call option
without early exercise opportunities.
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Delta profile Continuous Barrier with early exercise
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Figure 10: Delta profile of a continuously monitored up-and-call option
with early exercise opportunities.
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Delta profile Discrete Barrier with early exercise

/,5"'55515','/'/ 2

5% 4

7 ”’%%%%%%%///
/5’,555/’5’,’,;/////5’,5;;/,//////////////////////
il

4

i i i
77 ////”'/”’”0/”’///"/////"////"’/////"’//////”’////////////
iU TS

‘ i 7
G ,,,////,,//;///////

W
iy
i

i
1y
iy

250

Figure 12: Delta profile of a discretely monitored up-and-aall option with
early exercise opportunities.
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6 Conclusions

e Set up a framework for pricing Barrier options under SV.
e Allow for early exercise features.

e Unify both continuously and discretely monitored options.
e Implement the method of lines approach.

e Some numerical examples.

e Future work:
— Incorporating jump diffusion as well,

— Pricing knock-in options under SV with early exercise feasu
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