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Problem

» Agent must purchase X shares of a financial asset by time T.

» Agent - a large investor, purchases from a limit-order book
with resilience.

» Purchases can be continuous (at rate) or in lumps.

» Objective: Minimize expected total cost of purchase.
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One-sided limit-order book

» A;,0 <t < T — continuous martingale - ask price in the
absence of our agent.

» /o — Infinite o-finite measure on [0, c0). The shadow
limit-order book to the right of A;.

Ay A+ Dy

» The shaded area shows the orders in the book. This is the
actual limit-order book.

» The white area E; shows orders missing from the shadow book.
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One-sided limit-order book, resilience

> X;,0 <t < T — Cumulative purchases by our agent up to
time t. Xo— = 0, X7 = X, Nondecreasing and
right-continuous.

» h(x) — Resilience function. Defined on [0, c0) with h(0) = 0.
h is strictly increasing and locally Liptschitz.

» E;,0 <t < T — Residual effect process. Combines both
agent’s purchase and book’s resilience:

t
Et:Xt—/ h(Es)ds, 0<t<T.
0

» D;,0 <t < T — Price displacement due to the combined
effect of agent’s purchases and book'’s resilience.



One-sided limit-order book, price displacement

A, A,+ D,

» F(x) = p([0,x)) — The left-continuous cumulative
distribution function for the shadow order book.
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One-sided limit-order book, price displacement

A, A+ D,

» F(x) = p([0,x)) — The left-continuous cumulative
distribution function for the shadow order book.

» Y(y) £ sup{x > 0|F(x) < y} — Left-continuous inverse of F.

» D; = (E),0<t<T.
» The current ask price is A; + D;.
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» Agent must purchase X shares of a financial asset by time T.

» Objective: Minimize expected total cost of purchase.
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» Obizhaeva & Wang (2005), Alfonsi, Fruth and Schied (2010):

v

Trade on discrete-time grid.

» Limit-order book has positive density (1 has a density f > 0).
» Resilience - exponential recovery (h(E;) = pE;).

» Properties of the optimal policy: deterministic;

all purchases, except the first and the last, are of the same size:

1 each purchase being exactly the amount by which LOB has
recovered since the preceding purchase !!!
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Optimal policy (THREE-JUMP STRATEGY )

» Make an initial lump purchase at time zero.

Purchase lumps and rate
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Optimal policy (THREE-JUMP STRATEGY )

» Make an initial lump purchase at time zero.

» Between time zero and an intermediate time tp, purchase at a
rate matching the order book resilience. The residual effect
process E; is constant over that time.

» At time tg, make another lump purchase.

» Between time ty and time T, purchase at a higher rate
matching the order book resilience. The residual effect
process E; is constant over that time.

» At time T, make a final purchase.

i
0 to T
Purchase lumps and rate
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Optimal Execution

SOLUTION. THE MAIN IDEAS.
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Cost of execution

Suppose for the moment that A; = 0 and no purchases have been
made prior to the present time.

» The cost of purchasing all the shares available at prices in
[0, x) is

p(x) 2 /[O’X)de(a.

» The cost of purchasing y shares is

O(y) £ o(v(y))

16
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Cost of execution

Suppose for the moment that A; = 0 and no purchases have been
made prior to the present time.
» The cost of purchasing all the shares available at prices in
[0, x) is
p(x) = £ dF(&).
[0,x)
» The cost of purchasing y shares is

O(y) 2 p(v(y)) + [y ~ F) vy
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Cost of execution

Suppose for the moment that A; = 0 and no purchases have been
made prior to the present time.

» The cost of purchasing all the shares available at prices in
[0, x) is

p(x) & § dF ().

(0,x)
» The cost of purchasing y shares is

O(y) 2 p(v(y)) + [y ~ F) vy

Suppose only that A; = 0. Recall that AX; = AE;.
» Then the cost of the purchasing strategy X;,0 <t < T, is

’
)= [ Deaxe+ Y [0(E) - o(Ei).

0<t<T

16
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Cost simplification

» A; = 0 may be assumed without loss of generality.
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Cost simplification

» A; = 0 may be assumed without loss of generality.

» The search for an optimal trading strategy can be restricted
to deterministic strategies.
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Cost simplification (cont.)

Theorem
The cost of using trading strategy X;,0 <t < T,

)
o= [ Deaxi+ 3 [o(E) - o)

0<t<T
T
— ¢(ET)+/ D:h(E;) dt
OT
= ¢(ET)—|-/0 g(h(Et)) dt ,

where g(y) = yi(h71(y)).

is equal to
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When "three-jump” strategy becomes " two-jump”

Recall g(y) £ yy(h~1(y)).
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When "three-jump” strategy becomes " two-jump”

Recall g(y) £ y(h(y)).

Theorem
If g is convex, then the optimal strategy does not make an
intermediate lump purchase, hence two-jump strategy.

Observation
Our function g(y) £ y¢(h~*(y)) is convex for the models in
Obizhaeva & Wang (2005), Alfonsi, Fruth and Schied (2010).
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Two-jump strategies: Idea of the Proof

Recall that Er = X7 — [ h(E:) dt.
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1 T
Cx) = S(EN+T 4 [ a(hE) e

> O(Er)+Tg <71_/0 h(E) dt> (Jensen)

X — Er
T )

= ®(Er)+ Tg(

and equality holds if h(E;) is constant on [0, T).

Minimize the last expression over E1 to determine the constant:
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and equality holds if h(E;) is constant on [0, T).
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Two-jump strategies: Idea of the Proof

Recall that Er = X7 — [;| h(E:) dt. We have

C(X) = o(Er) +T/

Vv

S(Er)+ T g < d /O h(E) dt) (Jensen)

= OE)+Tg (X _TET> : (1)

and equality holds if h(E;) is constant on [0, T).

If e* minimizes (1), then h(E;) = E on [0, T).

Strategy: AXo=h"! ( ) purchase at rate X=¢ on [0, T),
X

at the end AXT =e* — h! ( Te*).
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Three-jump strategies: ldea of the Proof

If g is not convex, replace g by its convex hull g.
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If g is not convex, replace g by its convex hull g. We have

C(X)

Y

-
SEF)+Tg (71_/0 h(E) dt) (Jensen) & (g > g)

X — Er
T )

~ e+ Tg( @

Let e* be a minimizer of (2) over E7, set y* = X=¢

*

If g(y*)=2g(y*) = Two-JUuMmPS (the lower bound is achieved).

Can we still achieve the lower bound if g(y*) > g(y*) ?
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Three-jump strategies: ldea of the Proof
There exist p € (0,1), and o < 3, s.t. y* = par + (1 — p) and

8(y") = pg(a) + (1 - p)g(B) -
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Three-jump strategies: ldea of the Proof
There exist p € (0,1), and o < 3, s.t. y* = par + (1 — p) and
8(y") = rg(@) + (1 - p)a(P) -

Set ty = pT and achieve the lower bound T g(y*) by

to T
TE(") = /0 g(h(E.))ds + / g(h(E.))ds |

to
where h(E;) = a on [0, tp) and h(E;) = B on [to, T).

The corresponding THREE-JUMP strategy:
AXo = h7(a), then purchase at rate o on (0, tp);
AX;, = h™Y(8) — h~1(), then purchase at rate 3 on (tp, T)

AXT = e* — ().
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Three-jump strategies
If g is not convex, replace g by its convex hull.

600
500
400
300
200

|
|
100 |
|

0 e
2 4 6 8 10 12 14 16 18

To achieve a constant consumption on the graph of the convex
hull that is not on the graph of g, say at 6, consume a while at 4
and a while at 10.324. The switch from 4 to 10.324 creates an

intermediate jump.
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Example (Block order book)
Let g and p be a positive constants. Set

F(x) =gx, h(x)=px.

Then

Optimal strategy:
» Initial lump purchase of size ﬁ,
» Intermediate purchases at rate 24€§T'

. - X
» Terminal lump purchase of size LT
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Example (Modified block order book)
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Figure: Density and cumulative distribution of the modified block order
book
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_lvy 0<y<a,
vly) = {y+b—a, a<y<oo,
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Example (Modified block order book)
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Example (Modified block order book, continued)

40
35
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20
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0 |

Figure: Functions ® and ¢ for the modified block order book with
parameters a =4 and b= 14
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Example (Modified block order book, continued)

2
_ y? OSYS37
g(y)—{ y2+(b—a)y, a<y <oo.
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ob——
2 4 6 8 10 12 14 16 18

Figure: Function g for the modified block order book with parameters

a=4 and b = 14. The convex hull g is constructed by replacing a part

{g(y) ,y € (a,B)} by a straight line connecting g(a) and g(§). Here
3 = 10.324
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Example (Discrete order book)
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Figure: Measure and cumulative distribution function of the discrete

order book
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Example (Discrete order book, continued)
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Figure: Functions ® and 1 for the discrete order book
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Example (Discrete order book, continued)

15

10 /

Figure: Function g for the discrete order book. The convex hull g
interpolates linearly between the points (k, (k — 1)k) and
(k+ 1, k(k+1)).
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