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Optimal Execution

Setup and main results
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Problem

I Agent must purchase X shares of a financial asset by time T .

I Agent - a large investor, purchases from a limit-order book
with resilience.

I Purchases can be continuous (at rate) or in lumps.

I Objective: Minimize expected total cost of purchase.
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One-sided limit-order book

I At , 0 ≤ t ≤ T — continuous martingale - ask price in the
absence of our agent.

I µ — Infinite σ-finite measure on [0,∞). The shadow
limit-order book to the right of At .

I The shaded area shows the orders in the book. This is the
actual limit-order book.

I The white area Et shows orders missing from the shadow book.
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One-sided limit-order book, resilience

I Xt , 0 ≤ t ≤ T — Cumulative purchases by our agent up to
time t. X0− = 0, XT = X , Nondecreasing and
right-continuous.

I h(x) — Resilience function. Defined on [0,∞) with h(0) = 0.
h is strictly increasing and locally Liptschitz.

I Et , 0 ≤ t ≤ T — Residual effect process. Combines both
agent’s purchase and book’s resilience:

Et = Xt −
∫ t

0
h(Es) ds, 0 ≤ t ≤ T .

I Dt , 0 ≤ t ≤ T — Price displacement due to the combined
effect of agent’s purchases and book’s resilience.
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One-sided limit-order book, price displacement

I F (x) , µ
(
[0, x)

)
— The left-continuous cumulative

distribution function for the shadow order book.

I ψ(y) , sup{x ≥ 0|F (x) < y} — Left-continuous inverse of F .

I Dt , ψ(Et), 0 ≤ t ≤ T .

I The current ask price is At + Dt .
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Revisiting agent’s goal

I Agent must purchase X shares of a financial asset by time T .

I Objective: Minimize expected total cost of purchase.
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I Obizhaeva & Wang (2005), Alfonsi, Fruth and Schied (2010):

I Trade on discrete-time grid.

I Limit-order book has positive density (µ has a density f > 0).

I Resilience - exponential recovery (h(Et) = ρEt).

I Properties of the optimal policy: deterministic;

all purchases, except the first and the last, are of the same size:

!!! each purchase being exactly the amount by which LOB has
recovered since the preceding purchase !!!
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Our contribution

I Model:

I Continuous time trading.

I No restrictions on the order book shape.

I Wider class of resilience functions.

I Optimal policy:

I Continuous-time analog for the models of the earlier papers:
continuous purchase at a constant rate, matching the book
resilience on (0,T ), with possible lump purchases at times 0
and T — (Two-jump strategy)

I In general, for other order book shapes, an intermediate lump
purchase may apply — (Three-jump strategy)
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Optimal policy (Three-jump strategy)

I Make an initial lump purchase at time zero.

0

Purchase lumps and rate
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rate matching the order book resilience. The residual effect
process Et is constant over that time.
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Optimal policy (Three-jump strategy)

I Make an initial lump purchase at time zero.

I Between time zero and an intermediate time t0, purchase at a
rate matching the order book resilience. The residual effect
process Et is constant over that time.

I At time t0, make another lump purchase.

I Between time t0 and time T , purchase at a higher rate
matching the order book resilience. The residual effect
process Et is constant over that time.

I At time T , make a final purchase.

0 t0 T

Purchase lumps and rate
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Optimal Execution

Solution. The main ideas.
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Cost of execution
Suppose for the moment that At ≡ 0 and no purchases have been
made prior to the present time.

I The cost of purchasing all the shares available at prices in
[0, x) is

ϕ(x) ,
∫

[0,x)
ξ dF (ξ).

I The cost of purchasing y shares is

Φ(y) , ϕ
(
ψ(y)

)

+
[
y − F

(
ψ(y)

)]
ψ(y).

Suppose only that At ≡ 0. Recall that ∆Xt = ∆Et .

I Then the cost of the purchasing strategy Xt , 0 ≤ t ≤ T , is

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.
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Cost simplification

I At ≡ 0 may be assumed without loss of generality.

I The search for an optimal trading strategy can be restricted
to deterministic strategies.
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Cost simplification (cont.)

Theorem
The cost of using trading strategy Xt , 0 ≤ t ≤ T,

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
is equal to

C (X ) = Φ(ET ) +

∫ T

0
Dth(Et) dt

= Φ(ET ) +

∫ T

0
g
(
h(Et)

)
dt ,

where g(y) , yψ
(
h−1(y)

)
.

18 / 31



When ”three-jump” strategy becomes ”two-jump”

Recall g(y) , yψ
(
h−1(y)

)
.

Theorem
If g is convex, then the optimal strategy does not make an
intermediate lump purchase, hence two-jump strategy.

Observation
Our function g(y) , yψ

(
h−1(y)

)
is convex for the models in

Obizhaeva & Wang (2005), Alfonsi, Fruth and Schied (2010).
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Two-jump strategies: Idea of the Proof

Recall that ET = XT −
∫ T
0 h(Et) dt.

We have

C (X ) = Φ(ET ) + T
1

T

∫ T

0
g
(
h(Et)

)
dt

≥ Φ(ET ) + T g

(
1

T

∫ T

0
h(Et) dt

)
(Jensen)

= Φ(ET ) + T g

(
X − ET

T

)
,

and equality holds if h(Et) is constant on [0,T ).

Minimize the last expression over ET to determine the constant:
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Three-jump strategies: Idea of the Proof

If g is not convex, replace g by its convex hull ĝ .

We have

C (X ) ≥ Φ(ET ) + T ĝ

(
1

T

∫ T

0
h(Et) dt

)
(Jensen) & (g ≥ ĝ)

= Φ(ET ) + T ĝ

(
X − ET

T

)
, (2)

Let e∗ be a minimizer of (2) over ET , set y∗ = X−e∗

T .

If g(y∗) = ĝ(y∗) ⇒ two-jumps (the lower bound is achieved).

Can we still achieve the lower bound if g(y∗) > ĝ(y∗) ?
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If g(y∗) = ĝ(y∗) ⇒ two-jumps (the lower bound is achieved).

Can we still achieve the lower bound if g(y∗) > ĝ(y∗) ?
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22 / 31



Three-jump strategies: Idea of the Proof

If g is not convex, replace g by its convex hull ĝ . We have
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Three-jump strategies: Idea of the Proof

There exist ρ ∈ (0, 1), and α < β, s.t. y∗ = ρα + (1− ρ)β and

ĝ(y∗) = ρg(α) + (1− ρ)g(β) .

Set t0 = ρT and achieve the lower bound T ĝ(y∗) by

T ĝ(y∗) =

∫ t0

0
g(h(Es))ds +

∫ T

t0

g(h(Es))ds ,

where h(Et) ≡ α on [0, t0) and h(Et) ≡ β on [t0,T ).

The corresponding three-jump strategy:

∆X0 = h−1(α), then purchase at rate α on (0, t0);

∆Xt0 = h−1(β)− h−1(α), then purchase at rate β on (t0,T )

∆XT = e∗ − h−1(β).
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Three-jump strategies
If g is not convex, replace g by its convex hull.

To achieve a constant consumption on the graph of the convex
hull that is not on the graph of g , say at 6, consume a while at 4
and a while at 10.324. The switch from 4 to 10.324 creates an
intermediate jump.
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Example (Block order book)

Let q and ρ be a positive constants. Set

F (x) = qx , h(x) = ρx .

Then

ψ(y) =
y

q
, Φ(y) =

y2

2q
, g(y) =

y2

ρq
.

Optimal strategy:

I Initial lump purchase of size X
2+ρT ,

I Intermediate purchases at rate ρX
2+ρT ,

I Terminal lump purchase of size X
2+ρT .
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Example (Modified block order book)

Figure: Density and cumulative distribution of the modified block order
book

ψ(y) =

{
y , 0 ≤ y ≤ a,
y + b − a, a < y <∞,

Φ(y) =

{
1
2y2, 0 ≤ y ≤ a,
1
2

(
(y + b − a)2 + a2 − b2

)
, a ≤ y <∞.
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Example (Modified block order book, continued)

Figure: Functions Φ and ψ for the modified block order book with
parameters a = 4 and b = 14
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Example (Modified block order book, continued)

g(y) =

{
y2, 0 ≤ y ≤ a,
y2 + (b − a)y , a < y <∞.

Figure: Function g for the modified block order book with parameters
a = 4 and b = 14. The convex hull ĝ is constructed by replacing a part
{g(y) , y ∈ (a, β)} by a straight line connecting g(a) and g(β). Here
β = 10.324
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Example (Discrete order book)

Figure: Measure and cumulative distribution function of the discrete
order book
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Example (Discrete order book, continued)

Figure: Functions Φ and ψ for the discrete order book
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Example (Discrete order book, continued)

Figure: Function g for the discrete order book. The convex hull ĝ
interpolates linearly between the points (k , (k − 1)k) and
(k + 1, k(k + 1)).
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