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Market Observations
Three key observations:

(1) Short-dated ATM expiring within a
month are:

e highly volatile
o weakly correlated to ATM expiring

beyond one year (when considering
monthly changes).
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(2) The ATM curve has often a local
minimum within the first three months.

(3) Strangle margins are persistent at the
short-end of the curve and the implied
volatility-of-volatility is therefore large
at the short-end.

USDJPY - May 2010

400.00% -
350.00% -

300.00% -
*

—e— EqvolvolMkt

250.00% -
—s— EqrhoMkt

200.00% -
150.00% -
100.00% -
50.00% -
0.00% ‘ ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6

-50.00% L-—-—-—-\-‘_. N -

-100.00% -

P. Balland 4 June 2010



Eqgvolvol, Eqrho for expiry T are respectively
the SABR volatility-of-volatility y., and the

SABR correlation p,,:

S, =F()X,
dX, 1 X, = og exp(re, W7 -3 (22 tydw
<dW?,dw/ >= pl dt

where S is the spot process, F' iIs the forward,
and JOT IS the initial volatility for expiry T.

We calculate y,, and p,, using the local-time

approximation as this is more accurate than the
expansion formula in the vicinity of the
forward:

E[(X; —k)"1=(Xo—k)" +5 [ E[c?5(X, —k)]dt

12
E[CT;25(Xt _k)]%j;e’((k)t L 1(k)

See E. Benhamou, O. Croissant (2007).
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Single Mean-Reversion

We consider for each expiry T the following
one-factor mean-reverting dynamic:

dx, | X, = o Jo,dw/"
v, =exp(2Z; —2varZ;)
A :jéye}“(”_t)de
<dWp? ,dw/"™ >= pdt

The volatility-of-volatility y, correlation p and

mean-reversion A are calibrated to the entire
smile-surface by moment matching:

Kirly, ANT) = Ky [7eq 01(T)
E[([; o2du)?]

0 “u

T
P = Peq
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As illustrated In the example below, the
calibration loses accuracy at the short-end. This
could be prevented by using a time-dependent
volatility-of-volatility, but at the cost of losing
time-homogeneity.

USDJPY - May 2010

A=1
400.00% -
L 4
350.00% -
—e— EqvolvolMkt
300.00% -
J —s— EqrhoMkt
—a— EqvolvolAnalytic 1F
250.00% - )
EqrhoAnalytic 1F
—x— Eqvolvol MC
200.00% -
—e—Eqrho MC

150.00% -

100.00% -

50.00% -

0.00%

-50.00% A

-100.00% -

P. Balland 7 June 2010



Double Mean-Reversion

We could improve the calibration’s accuracy at
the short-end and maintain time-homogeneity

by using a two-factor stochastic volatility
model:

dX,1 X, = ot \Ju,dW”

v, =exp(2Z; —2varZ;)

dz7 = hg(Z}" = Z7)dt + ygd W)
Az} = Ay (Z,, — Z27)dt + yoqd W,

By direct integration, we obtain:

A Zg e hi v 7 (1—e P+ (28 - Z,) Lf (gt g~ Hsal

l 1 .[07 lld(u t)(l e(/isd — Ay Yu— t))dW[d
sd ~Md

+ IO Vsd€ foa (u_t)quSd
= E[27]+ 7" + 75

Typically, the dynamic is based on two non-
overlapping time-scales:

vy =11 A, oclweek, t,; =112, lyear.
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Hence, the dynamic is similar to the two-factor
volatility model considered In Balland (2006)
and Bergomi (2008, 2005):

Ztld — ﬂsjs—dxild J‘é Vldelld (u—t) (1- e(ﬂ'sd —lzd)(u—f))quld

~ fct) ?/zdeﬂld (u_t)quld

Z;‘d _ J'(t) }/Sde/isd (u—t)dVVuSd
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ATM Minimum

We can approximate short-dated ATM levels as

follows:

ATM ;= |1 ! E[62]du

L[ Elo;Jdu = L[y exp(2E[Z] ) du

The ATM curves generated by the double mean-
reversion model admit typically local minima.
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Smile Calibration

We calibrate the parameters y.;,717, 44,44 10
the smile surface by moment matching:

Korlsa v1d Asa» Ha)(T) = Kap[ydg OI(T)
E[([ o2du)?]
E[([y o2du))?

Koplysa:Vias AsarAa I(T) =

T T
Psd, fx Veq,sd +pld,fx Veq,ld T

= pe
T 2 T 2 T T q
\/(7eq,sd) +(7/eq,ld) +2psd,ld 7eq,sd J/eq,ld

where y,, ., and y_,,; are obtained by solving
the following equations:

Kip[Veg.sa:00(T) = Kip[7sa s A 1(T)
K1p[7 k10 01T) = Kip[yia, 4 T)
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USDJPY - May 2010
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The moment-matching technique used to
compute effective volatility-of-volatilities and
correlations Is accurate when compared to the
Monte-Carlo method.

We observe that the fit to market data Is

substantially improved by using double mean-
reversion.
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As illustrated in the example below, the model

parameters Ay, Az, Vsas Vidr Psaja @ P 4
appear relatively stable over time.

USDJPY
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The correlation parameter p,,; 5 appears less

stable. This Is expected since the model does not
Include any local volatility.
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Two-Factor SLV Model

We control the joint evolution between risk-
reversal and spot by including a local volatility
component o(z,In X,) in the dynamic:

S = Xkoy

dX, 1 X, = o(1,In X,)\Jv,dW;”
v, =exp(2Z;7 —2varZ;)

70 =7" 4+ 7%

d ¢t ld g (1~
Zi = |oMy Pia, p:V1a € (=D gy

ld 1

‘ 2 \1/2
+ Jomd A= i, i)

Y14 eild (”—f)qufXJ—

d t  sd A -
ZIS - omi psd,fxysde sa (1 t)qufx

o sdl Agq (u—t) fel
+ _[omu Xsq)sd € ° qu

¢ sdl 2 2
+Jom U= pha, i — )

_ Psd,ld —Psd, xPld, fx
- 2 1/2
(1_pld,fx)

1/27/Sd eﬂvsd (u—t)qufo_J_

227

d dl Id _ Idl

where m>* , m>—,m™,m are the mixing-
weight parameters.
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As these parameters vary between zero and one
while maintaining fixed the target smile, the
dynamic varies from local to stochastic
volatility dynamic.

The parameters m*?,m control the amount of

volatility-of-volatility parallel to the spot
motion. As they increase from zero to one while
the target smile is fixed, the slope of the local
volatility decreases to compensate for the
Increase in volatility-of-volatility parallel to
spot. Despite these parameters affecting the
backbone of the dynamic, they have in fact little
effect on the valuation of exotics.

An asymptotic calculation shows that we have
for all mixing weights:

Aﬁrﬂg =20k F2o)(INF,0)

2r(InF,InK/ F):=implied-volatility
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i AATM
The ATM-speed coefficient <77 Is to be

understood In the sense of Malliavin derivative:

dATM, _ ATM 7 P Sl
ATM, — AInF dWxJ“("')thx

The parameters m*“* m'+ control the amount

of volatility-of-volatility orthogonal to the spot
motion. As they Increase from zero to one while
the target smile Is fixed, the convexity of the
local volatility decreases to compensate for the

Increase in volatility-of-volatility.

Hence, the mixing-weights m“* m**+ control

the convexity of the local volatility and thus
control the joint evolution of risk-reversal (slope
of smile) and spot.

They are therefore critical to the valuation of
Barrier and DNT products as these parameters
affect directly the expected slope of the smile
prevailing when spot hits the barrier level.

An asymptotic calculation shows that the RR25
speed 5XR%> depend on the level of mixing

welghts.
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As illustrated in the example below, the spot
and risk-reversal are strongly correlated.

dRR25/dInF

0.006 -

ARR25 =0.0767* AlInF - 2E-05

ARR25

AFIF

The mixing weight parameters m* m** can

be set to match historical RR25 speeds or DNT
prices.
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Simplification

Typical short-dated products do not depend

strongly on the mixing-weights m* and m' as
these parameters control whether the skew
Implied by the dynamic originates from local or
stochastic volatility.

Consequently, we can simplify the dynamic by

. d Id
assuming m"“ and m™“ to be zero:

St = X Foy
dX, 1 X, =o(t,In X,)/o,dW/*
v, =exp(2Z; —2varZ;)

. 2 \1/2 dL Aoy =g Y—t)7 g (= 1
zg = [\~ Q= pig, 5" “via +my, Gy 5q €t ~HDUT ] hua WD gy

I sdl

2 2 \1/2 A - 11
+ Omu (1_psa’,fx_asd) Vsd € sa t)qufx

_ Psd,ld ~Psd, xPld, fx
- 2 \1/2
A-pia, 4)

Ad

Using our moment matching technique, we can
approximate the dynamic of the volatility driver
using either a one-factor or a two-factor
dynamic:
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(1) AR J‘é yul o (u—t)qufxi + (t)yuli osd (u—t)qufoL

(i) 20 = [yt PutDam

The orthogonalisation allows fast backward and
forward iInductions. In particular, we can
approximate the volatility drivers using Markov
chains:

() 77 =xieh+xiet
(i) 77 =xte

where &7, & are independent N(0,1)-

processes characterized by their auto-correlation
functions.

The version (1) iIs sufficient for first generation

exotic products. We can calibrate the local-
volatility to the smile assuming (ii) in particular.
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Calibration

Parametric Local Volatility

We parameterize the local volatility:

a(ln X;)=0¢(?)
X O gkew(IN X})
X O convex (IN X)
X Oilling (IN X})

We choose the local volatility skew using a ratio
of CEV. This ensures that the skew component
has a CEV-like shape near the forward while
being bounded:

(X)) +a
O skew (IN X ;) = (Xt)ﬂ—1+b
t

1+ 1- 1+
=+ tanh(ﬁ(ﬂ—l) InX,)

q < Gskew(InXl‘) <1
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The local volatility skew component has a
functional form similar to that suggested by
Brown and Randall (2003):

o(InX,) =04, + Ospon x taNN(age, IN X, 1 X 4 00)

_ _ 1
+ Omite * (L cosh(agie INX, 1 X ))

smile smile

Note however that the BR functional form is
additive while our parameterisation is in fact
multiplicative.

The convex local volatility shares the same
short-dated asymptotic as SABR In order to
minimize changes in the smile when the mixing-
weight parameters vary:

Toomer(NX,) =11+ 2aIn X, +b%(In X, )2

The killing component ensures finite moments
by exponentially decreasing the spot volatility
outside the boundaries x,,,,() and x, (:):

iting (N X)) = exp(-k(In 5 )" ~k(In “22)")
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Finally, we calibrate the function o(¢) to the
prevailing ATM curve by forward induction.

Parametric Smile

We can parameterize the smile surface using
asymptotic expansions of the previous diffusion
(7,0 =0, 4, =0) which is a direct extension of

SABR for FX:

dX, 1 X, =o0,x04,,(InX,)xo

2
o, =0 exp(y’ W7 =1 (y")%1)

(InX;)dw,

convex

In this case, the local volatility is obtained by
forward induction using the equation:

o(t,InX,) =op(t,In X,) E[e*% 24 [In X, ]2

where o, (¢,In X,) Is the Dupire local volatility
obtained from the parameterized smile.
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