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1.1 Synthetic CDO structure
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to =0 ti—1 t; t, =T : Premium dates t,, 1 <1<n

Premium for ith period (due at ¢;) o (S — tranche losses up to t;)
T const. = s x (t; —ti—1);s: “spread”




1.2 Synthetic CDO: Structure summary for pricing

General assumptions

» Constant fair spread rate, s;

» Fixed premium times after today (¢g): 0 =g <t <to < -+ < ty;
« Deterministic discount factors, d; , corresponding to %;;

* Credit events occur only “at” each premium date;

« Static underlying pool.

Notation

. ﬁgk):: loss on kth name, up to time ¢;;

« Li:=) 1 L;": pool's cumulative losses up to time t;;
« {: attachment point of the tranche;

» U : detachment point of the tranche;
«S := u — ¢: thickness of the tranche;

« L; = min (S, (L£; — €)7): tranche loss up to time %; .



1.3 CDO tranche payoff function
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1.4 Synthetic CDO: Pricing equations

Swap Equations

PV[Default leg] = >" E[(L; — L;—1)d;]
i=1

PV[Premium leg] = 5 3 E[(S — Li)(t — t;_1)d]

s from setting: PV[Default leg] = PV[Premium leg]

Value to protection seller = PV[Premium leg|] — PV[Default leg]
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Swap Equations

PV[Default leg] = 3 B[(L; — Li_1)di] = . (E[L;] — E[L;_1]) d;

PV[Premium Ieg] — S Z E[(S — LZ)(tz — tz’—l)di] = S Z (S — E[LZ])(tZ — ti—l)dz‘]
i=1 i=1
s from setting: PV[Default leg] = PV[Premium leg]

Value to protection seller = PV[Premium leg|] — PV[Default leg]



1.4 Synthetic CDO: Pricing equations

Swap Equations

Zl (E[L;] — E[L;—1]) d;

PV[DefauIt Ieg] = Z E[(L% — Lz_l)dz] =
=1 7

(e

PV[Premium leg] — s é B((S — L)t — ti1)di] = s ijl (S — B[Li])(ti — ti1)di]

s from setting: PV[Default leg] = PV[Premium leg]

Value to protection seller = PV[Premium leg|] — PV[Default leg]

f(5 )

(2;6,14) = min(u — £, (z — £)T)

Essential Calculation

E[Li] = E[f(L:)]

where

() =

—




2. Basic problem (abstracted)

 Setting: conditional independence framework; i.e.,
= family of non-negative r.v.’s Z;. which are conditionally independent,
conditional on some auxiliary r.v. (possibly vectorial), M ,
with distribution & (7).

K
= payoff function f, evaluatedon 7 := Y 7, .
k=1



2. Basic problem (abstracted)

 Setting: conditional independence framework; i.e.,

= family of non-negative r.v.’s Z;. which are conditionally independent,
conditional on some auxiliary r.v. (possibly vectorial), M ,
with distribution & (7).

K
= payoff function f, evaluatedon 7 := Y 7, .
k=1

« Essential numerical aspect: Efficient and accurate evaluation of
En|f(Z)] = E[f(Z) | M = M] (1)

leading to an evaluation of

E[f(Z)] = ] B [£(2)] d®(M).




3.1 Comparison of approaches

» Two types of approaches
« Each addresses conditional expectation (1) differently
* Final integration (over M ) is the same for both types



3.1 Comparison of approaches

» Two types of approaches
« Each addresses conditional expectation (1) differently
* Final integration (over M ) is the same for both types

Traditional approach

1. Compute the conditional distribution ¥; of Z , conditional on M, using
either FFT, recursion, or some approximation method.

2. Compute the conditional expectation E,/|f(Z)]:
Eulf(2)] = [1(2) a2

3. (Integrate the conditional expectation over M.)




3.2 Comparison of approaches (cont’'d)

EAP approach
1. Approximate the non-smooth function f by a finite sum of exponentials.

2. Approximate the conditional expectation E;[f(Z)] via explicit* evaluation
of Ejlexp(cZy)]. (*Assumption!) No W, is necessary.

3. (Integrate the conditional expectation over M. )



3.2 Comparison of approaches (cont’'d)

EAP approach

1.

2.

Approximate the non-smooth function f by a finite sum of exponentials.

Approximate the conditional expectation E/[f(Z)] via explicit* evaluation
of Eplexp(cZy)]. (*Assumption!) No W, is necessary.

(Integrate the conditional expectation over M. )
(reprise) Details:

N
f(z) =~ Z—:1 wy, exp(cpz) =

N
Z wpErlexp(enZ)]

n=1

N
n=1

En|f(Z)]

Q

H exp(cp, Z)

N K
Z H mlexp(en, Zi)].




4.1 EAP applied to CDO: Reduction of payoff

function to hockey-stick function

For CDO,
f(2) = f(z6u) =u[l = h(2)] = ([1 = h($)],

where h(zx) =1—xz if x <1, 0 otherwise. (“Hockey-stick function™)

h(z) |

1

> T



4.2 EAP applied to CDO (recap)

Suppose N
h(z) = ) wnexp(yne),
n=1

where Wyn and ¥, are (in general) complex numbers.

Then
Eym[f(Z)]

(u— /¢ —unz:wnHEM[eXp( )]—i—gnz:wnHEM[eXP( )}

Note: Only Eps|exp(cZg)| of individual names are computed, where ¢ = 22 or =



4.3 EAP applied to CDO: Hockey-stick function’s

parameters

EAP approach reduces to the uniform approximation problem:

N
h(z) = > wpexp(yne),

n=1
where Wy and Vrn are complex numbers. E.g., with N = 25:

Plot of ®
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Plot of ¥
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Parameters 7,, and w,, for the 25-term approximation.



4.4 Plots of two approximations to A
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Left panel: 5-term exponential approximation;
Right panel: 49-term exponential approximation

The maximum absolute error in the approximation is roughly proportional to 1/N:

N 25 50 100 200 | 400
Max absolute error || 6.4e-3 | 3.2e-3 | 1.6e-3 | 8e-4 | 4e-4




5. Pros and cons of EAP approach

Pros
* Faster than traditional approach for:
» single tranches
» very heterogeneous pools
» large pools
Ex. EAP-50: 10 x faster for first 4 tranches of one real CDO with 140-name,
very heterogeneous™ pool (*LGD varied from LGDmin to LGDmax =7 X LGDmin)
* Quite accurate (e.g., with 50 exp terms, spreads observed correct to within 1 bp;
for all but highest tranche: < 0.5% rel error)
* No rounding of losses, as in many versions of the traditional approach
* EA can be calculated once, stored, then used for many pools
* Sensitivities (e.g., of spreads to PDs) are easily incorporated

Cons

» Slower than traditional approach for:
» multiple tranches (> 3)
» highest tranche (requires very large number [~200] of exp terms)
» very homogeneous pools



6.1 Source of Exponential Approximation

Revised notation
e M: 2M + 1 = # points in partition of |0,1] : {ﬁ 0 < k< 2M}
e h: any continuous function on |0, 1]

b 1= (k)

Discretisation

N
For h(z) = > wyexp(ynx), set (, =exp(v,/2M).

n=1

Consider discretised problem:

N
hie = > wpCk, 0<k<2M,  (equality!)

n=1
where N,(,,w, TBD, 1 <n <N.




6.2 Source of EA (cont'd)

Gaspard de Prony (~1795)

3. Set {(1,(2,...,(n} to be roots of some polynomial equation
N
k
D act=o.
k=0
4. Solve for wq,ws,...,wn as solution to linear equations

N
hie = wnCl, 0<kE<N-—1. (%
n=1

Require (x) also holds (by induction) for N < k < 2M.




6.2 Source of EA (cont'd)

Gaspard de Prony (~1795)

1. Form (M + 1) x (M + 1) Hankel matrix H: Hpy,, = hgynp-

2. Find (M + 1)-vector g s.t. Hq = 0, with g = —1; ¢, = 0, n > N.
This is a recurrence relation of length /N for hg:
N—1
hN—|—k — Z thk+m
1m=0
3. Set {(1,(2,...,(N} to be roots of polynomial equation
N
> arch =o0.
k=0
4. Solve for wq,wa,...,wyn as solution to linear equations

N
hie=> wnCl, 0<k<N-1. (%
n=1

Then (x) also holds (by induction) for N < k < 2M.




6.3 Source of EA (cont'd)

Shortcomings
- Numerical nullspace of H is usually very large — numerical instability.

« System (*) can be extremely ill-conditioned.

Beylkin & Monzon (2005)

Replace equation Hg = 0 with Hu = ou where ¢ = oy > 0 and is small
(entailing IV large). It turns out that error of approximation

N
hi — Z wndﬁ
n=1

is controlled by the smallest positive o .

max
k
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4 Source of EA (cont'd)

Beylkin-Monzén Algorithm for hockey-stick function (N — N +1=N, M = N)

1.
2.
3.

Input € as given accuracy.
Find the smallest A such that A” > .

Compute the spectral decomposition of the matrix Hy: Hy = UAU?.

Let u = (ug,u1,...,un—_1)1 be the last column of U. (|A] | down diag(A))
N—1

Find all roots (1,(2,...,(nv—1 of the polynomial equation: > u,,(™ = 0.
m=0

N—1
. Solve (least-squares) linear system, for wy: hy,, = > w7, 0 < m < 2N.
n—

1

. Compute ~,, according to v,, = 2N log (,.

N N—-1 ... 17 Remarks:
N1 N—2 ... 0 e h considered on [0, 2], rescaled to |0, 1].

1 0 T o ﬁHN is upper right block of H; rest is Os.

: :
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