A factor contagion model for portfolio credit derivatives
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Introduction

@ Valuation of portfolio credit derivatives when there is a contagion effect

@ Marshall-Olkin copula & Contagion model

@ Distribution of the kth default time
@ Portfolio loss distribution

@ Interacting recovery rate
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Introduction

Copula Model
@ Li(2000) : Gaussian copula function approaches

@ Laurent & Gregory(2005), Andersen & Sidenius(2003), Bastide et
al.(2007) : pricing method with various copula functions

@ Andersen et al.(2003), Hull & White(2004) : recursive techniques to
derive loss distributions
Contagion Model
@ Davis & Lo(2001) : infection model
@ Jarrow & Yu(2001) : primary-secondary framework
@ Frey & Backhaus(2008) : pricing method using Markov process
technique
Default Probability & Recovery Rate
@ Altman et al.(2005) : relations between default probabilities and recovery
rates
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endence Model for Default Times

One factor Marshall-Olkin copula model

Bivariate Marshall-Olkin copula

@ Z; ~exp(A1), Zo ~ exp(Xz2), Z ~ exp()) : independent
@ X; =min(Z,Z;) and X; = min(Z,Z;)
s (Xi) — ef(/\.+>\)><,7 S(Xl,Xz) — e*>\1><1*/\2><2*/\ max(Xq,X2)

: marginal and joint survival functions of X; and X,

- -
Bivariate Marshall-Olkin copula

@ By Sklar's theorem, there exists a unique survival copula C satisfying

S(X1,X2) = C(s1(X1), S2(X2)).
@ Marshall-Olkin copula is given by

C(u1,Uz) = min(uau;~*, uui~ %),

D
PEB Y

where 6; =

\
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Dependence Model for Default Times

One factor Marshall-Olkin copula model

One factor Marshall-Olkin copula model

@ Vo ~ exp(a) : systematic factor, 0 < a < 1
Vi ~ exp(1 — «) : idiosyncratic factor, i = 1,...,n

@ Vy and V; are independent
@ Vi = min(Vo, Vi) ~ exp(1)

Definition of default times

@ The default time 7 of name i is defined as

7 :inf{t >0:/Ot>\,(s)ds zv.}.

@ The distribution function of the kth default time is
“w = [T B < tve = visway,
0

where ¢ is the probability density function of Vo and 7 is the kth default
time.




One Factor Contagion Model
o0

kth default time

default time under one factor contagion model

Default intensity and default times

n
@ A(t)=a(t) +c(t) Y 1{ <y : defaultintensity
j=1,j#i

Assuming that the jth default occurs, we define the following random
variables conditional on Vg = v,

o 7i(v) = inf{t >0: fé(a(s) +jc(s))ds > min(v,Vi)}
: conditional default time after jth default

@ 7in_j(v) : ith order statistic of 71(v), ..., m_j(V), i.e.,

Tin—j(V) <0 < Tinj(V) <00 < Tnejnj (V).
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One Factor Contagion Model
oce

kth default time

kth default time and its distribution

@ The kth default time 7%(v) conditional on Vo = v is defined by

k
(V) = Z Tin—j+1(V)-
j=1
@ The distribution function of the kth default time can be written as

FO(t) = /000 ]p< zk: a1 (V) < t> o(v)dv,
j=1

where ¢ is the probability density function of V.




One Factor Contagion Model
@00
Distribution of kth default time

Theorem (Distribution function of  kth default time - General case)

Let the default time 7 and its default intensity \i(t) be defined as above.
Let

t
Q) = / (a(x) + ic(x))dx
and

fen(t) = (L — @)(n — £+ 1)Qq_,(t)e~ 7O DQ—1(0,
Let ¢ be the function whose Laplace transform is given by

a(s):si%z[lﬁ[fz,n(g)],

where X be a unit exponential random variable.
Then the distribution function of 7* is
k—1

F(k)(t) _ Ck(t)e—&Qk_ﬂt) + Z Ci(t)(e—&Qi_ﬂt) _ e—&Qi(t)) 41— e—aQo(t).
i=1




One Factor Contagion Model
oeo

Distribution of kth default time

Theorem (Distribution function of  kth default time - Special case)

Leta(t) =a > 0 and c(t) = ¢ > 0 be constants.
Let Qi(t) = (a+ic)t and let ¢ be the function which is given by

G(t)=1- EI: Ay i exp <7lp_ at)

-1 Z,n
where

P 1
Ag,:iA and ppp=-—""—.
Hj:1,j#g(p£,n —Pj,n) (n—£+1)qe—1

Then the distribution function of 7% is

k—1
F(k)(t) _ Ck(t)e_&Qk—l(t) + Z Ci(t)(e—&Qi_l(t) _ e—&Qi(t)) 41— e—aQo(t).
i=1




One Factor Contagion Model
[e]e] J

Distribution of kth default time

Corollary (The number of defaults up to time  t)

Let N(t) be the number of defaults up to time t. Then

(1 — ¢i(t))e2Q® ifk =0
P(N(t) =K) =< (C(t) — Cera(t))e O ifk =1,....n—1
FM(t) ifk =n

where ¢ (t), Qk(t) and F(M(t) are given in the previous theorems.
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Pricing Portfolio Credit Derivatives
o

kth-to-default swaps

kth-to-default swaps

Now we compute premiums of portfolio credit derivatives.
We use the following notations:

@ R : recovery rate
@ T : maturity of the contracts
@ B(0,t) : price of risk-free zero coupon bond with maturity t

@ tj : premium paymentdates,0 =ty < --- <ty =T and Ai_1; =t — ti_1

Proposition (Premium of  kth-to-default swap)

The annualized premium sy of a kth-to-default swap is equal to
a (1 —=R) [y B(0,t)dF®(t)
SN A LBOE)(E - FOE) + AT (-4 1)B(O, )N}

Sk
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Pricing Portfolio Credit Derivatives
0000

Single tranche CDOs

Single tranche CDOs

Define a cumulative percentage loss L(t) on the homogeneous reference
portfolio up to time t

1-
L(t)= —— Z lin<ty = —N(t)
i=1
Consider a CDO tranche with an attachment point A and a detachment point
B where 0 < A < B < 1. The percentage loss L(t, A, B) on the tranche [A, B]
up to time t is defined by
max(L(t) — A,0) — max(L(t) — B, 0)

L(t,A,B) = T
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Pricing Portfolio Credit Derivatives
(o] le]e)
Single tranche CDOs

Proposition (Premium of single tranche CDO)

The premium sp g of the tranche with an attachment point A and a
detachment point B is equal to

_ B(0, T)E[L(T,A,B)] + fOT (0, s)B(0, s)E[L(s, A, B)]ds

e SN, A 1B(0,6)(1 — EL(t, A, B)])

where
1 5 LR
E[L(t,A,B)] =1 — ﬁ/A > B(N(t) = £)dx,
£=0

ly | is the largest integer not greater than y and f(0, t) is the spot forward
rate.




Pricing Portfolio Credit Derivatives
ooeo

Single tranche CDOs

Interacting recovery rates

Define an interacting recovery rate R(t) by

n
R(t) = R(] — ’YZ 1{Tk§t}'
k=1

In this case, the cumulative percentage loss is given by

n

L= (1 (Ro—k))1pcyy

k=1

and the loss on a tranche [A, B] is

[(,A.) = MO —A0) - max(L() -8.0)
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Pricing Portfolio Credit Derivatives
[e]e]e] )
Single tranche CDOs

Proposition (Interacting recovery rate)

The premium s, g of the tranche with an attachment point A and a
detachment point B is equal to

o B(0, T)E[L(T,A,B)] + [, f(0,s)B(0,s)E[L(S, A, B)]ds
Mo SN, Ai_1,B(0,5)(1 — EL(5, A, B)))

where
B LB(x

E[L(t, A, B)]—177/ Z P(N(t)
and

B(x) = %( — (21 = Ro) +7) + \/(2(1 —Ro) +7)? +87nx).




Numerical results

Default intensity

Assume that the default intensity is given by

n
Nt =ae™ (1460 Y Licy
=1,

@ a: the base default intensity

@ ¢ : the rate of exponential decay

@ 0 : the level of contagion.
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Distribution of default times

Distributions of kth default time

Probability density of the fifth default time

Figure:
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Probability density of the fifth defauit ime

Numerical Results
[ 1]

time

Probability densities of the 5th default times with oo = 0 (left) and o = 0.3 (right)
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Numerical Results
(o] J
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Figure: Probabilities of the number of defaults up to time t = 5 with o = 0,0.3, 0.6, 0.9 for the
contagion level § = 0 (left) and 6 = 0.1 (right).
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Numerical Results
L Je]

Pricing basket default swaps
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Figure: Premiums of kth-to-default swaps against contagion levels 0 < 6 < 3 with « = 0 (left)
and o = 0.5 (right) for k = 2, 4,6, 8,10
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Numerical Results
o] ]

Pricing basket default swaps
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Figure: Premiums of kth-to-default swaps against correlation 0 < o < 1with T =5fork =1
(upper left), k = 2 (upper right), k = 3 (lower left) and k = 4 (lower right) 20/25



Numerical Results
000

Pricing single tranche CDOs

STCDO-Contagion level
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Figure: Premiums of STCDOs against contagion levels 0 < 6 < 3 with o = 0 (left) and o = 0.5
(right) for [A, B]=[0%, 3%)], [3%, 6%], [6%, 9%)], [9%, 12%)]
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Numerical Results
(o] le)

Pricing single tranche CDOs

STCDO-Correlation
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Figure: Premiums of STCDOs against correlations 0 < « < 1 with [A, B]=[0%, 3%)] (upper left),
[3%, 6%)] (upper right), [6%, 9%)] (lower left), [9%, 12%)] (lower right)
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Numerical Results
o] )

Pricing single tranche CDOs

STCDO-Interacting recovery rate
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Figure: Premiums of STCDOs against 0 < v < 0.005 with @ = 0, a = 0 (upper left), § = 0,
« = 0.5 (upper right), 6 = 0.5, a = 0 (lower left) and 6 = 0.5, o = 0.5 (lower right) 23)25



Summary

@ A homogeneous reference portfolio with correlation risks as well as
contagion effect

@ One factor contagion model with Marshall-Olkin copula

@ A simple and efficient method for finding the distribution of the kth
default time and pricing portfolio credit derivatives

@ The reference portfolio with interacting recovery rates

@ The relationship between premiums and parameters such as default
correlation and the level of contagion
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Summary
e ———

Thank you!
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