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Introduction

Liquidity effect

» Buy/sell arbitrary combination of stocks - finite time horizon.
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Introduction

Liquidity effect

» Buy/sell arbitrary combination of stocks - finite time horizon.

» Auction markets implies a liquidity effect (or market
impact/execution costs): v shares, during d, from 7 generates
an over-cost n(v; 7,7+ 0) .
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Introduction

Liquidity effect

» Buy/sell arbitrary combination of stocks - finite time horizon.

» Auction markets implies a liquidity effect (or market
impact/execution costs): v shares, during d, from 7 generates
an over-cost n(v; 7,7+ 0) .

» “Obtained price™: S; + n(v; 7,7 + ) with

.
v
T, N=a- , ) . , - .
n(v;7,7+0) =a- - ¢Ypa(r, 7+ 0)+k - o(r T+6)<V(T,T+5)>
Bid-Ask spread

asked volume ratio
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Introduction

Liquidity effect

v

v

v

v

Buy/sell arbitrary combination of stocks - finite time horizon.

Auction markets implies a liquidity effect (or market
impact/execution costs): v shares, during d, from 7 generates
an over-cost n(v; 7,7+ 0) .

“Obtained price™ S; + n(v; 7,7 + 0) with

y v
n(v; 7,7 +0) =a- - ¢Ypa(r, 7+ ) +k-o(7,7 +9) <W> .

Bid-Ask spread
asked volume ratio

Remark: 7 introduced to take into account quantitatively the
aggregated effet on price.
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Introduction

Classical approaches

» Original framework: a priori discretization of the trading
phases [Almgren and Chriss, 2000], taking into account real
time analytics came from continuous time models [Almgren,
2009].

» Modified framework: inclusion of new effect

» statistical effects [Lehalle, 2008],

» specific properties of the price diffusion process (mean
reverting) [Lehalle, 2009],

» information at an orderbook level [Hewlett, 2007],

» Bayesian estimation of the market trend [Almgren and Lorenz,
2008].
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Introduction

New approach

» Take into account “slicing” of parent orders into child orders
and their interactions with the market microstructure.

» Offer the capability to model the market underlying moves via
time-continuous models.
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Introduction

New approach

» Take into account “slicing” of parent orders into child orders
and their interactions with the market microstructure.

» Offer the capability to model the market underlying moves via
time-continuous models.

» Algorithmic trading process is the one of switching between
those states:

> the passive regime: no slice in market, price formation process
will continue to take place without interaction with the
controlled order,

> the active regime: parametrized slice in market, duration
bounded from below by a constant §, characteristics of a slice
are chosen just before its launch, cannot be modified until it

ends.
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Introduction

Advantages

> Able to control the launch of any type of slices, from very
simple ones (as in [Almgren and Chriss, 2000]) to the launch
of “trading robots” (incorporating Smart Order Routing).
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Introduction

Advantages

> Able to control the launch of any type of slices, from very
simple ones (as in [Almgren and Chriss, 2000]) to the launch
of “trading robots” (incorporating Smart Order Routing).

» Lead to an optimized not-uniformly sampled sequence of
simple slices, taking into account the market rhythm.
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Introduction

Advantages

> Able to control the launch of any type of slices, from very
simple ones (as in [Almgren and Chriss, 2000]) to the launch
of “trading robots” (incorporating Smart Order Routing).

» Lead to an optimized not-uniformly sampled sequence of
simple slices, taking into account the market rhythm.

» Also to control meta trading algorithms: optimal launch of
sequence of traditional algorithms (the first to proposed this
possibility).
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Introduction

Advantages

> Able to control the launch of any type of slices, from very
simple ones (as in [Almgren and Chriss, 2000]) to the launch
of “trading robots” (incorporating Smart Order Routing).

» Lead to an optimized not-uniformly sampled sequence of
simple slices, taking into account the market rhythm.

» Also to control meta trading algorithms: optimal launch of
sequence of traditional algorithms (the first to proposed this
possibility).

» Continuous-time allows the use of traditional models and tools
from quantitative finance.
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Problem formulation
[ le]

Control policies

Control variables

> (711,&i,0i)i>1 where:
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Problem formulation
[ le]
Control policies

Control variables

> (711,&i,0i)i>1 where:

» (7;)i>1 non-decreasing sequence of stopping times: times order
is sent,

» (0;)i>1 sequence of [§, co)-valued random variable where
d € (0, T): length of the period (latency period).
> 7-,-+5,- ST,'Jrl and ((5,’>0:>T,'+(5,' < T), P> 1,
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Problem formulation
[ le]

Control policies

Control variables

> (7’,‘, 5,‘, (5,‘),’21 where:
» (7;)i>1 non-decreasing sequence of stopping times: times order
is sent,
> (&i)i>1 sequence of E-valued random variables, E compact
subset of RY , d > 1: value of algorithm's parameters,
» (0;)i>1 sequence of [§, co)-valued random variable where
d € (0, T): length of the period (latency period).
> 7-,-+5,- ST,'Jrl and ((5,’>0:>T,'+(5,' < T), P> 1,
> (0;,&;) is Fr,-measurable , i > 1,
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Problem formulation
[ le]

Control policies

Control variables

> (7’,‘, 5,‘, (5,‘),’21 where:
» (7;)i>1 non-decreasing sequence of stopping times: times order
is sent,
> (&i)i>1 sequence of E-valued random variables, E compact
subset of RY , d > 1: value of algorithm's parameters,
» (0;)i>1 sequence of [§, co)-valued random variable where
d € (0, T): length of the period (latency period).
> 7-,-+5,- ST,'Jrl and ((5,’>0:>T,'+(5,' < T), P> 1,
> (0;,&;) is Fr,-measurable , i > 1,
> vt € [r,Ti + 0;) — vp: value of the parameter at t,
vi =w € RI\ E for t € A((7,0;)i>1), defined as

A((r7,0)i=1) =R\ | Ulm, 7+ 6)
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Problem formulation
oe

Control policies

. v
Control policy 1
14
Vit {—[
| y !
| ,+1 |
& p—— | |
: | | | AV |
I I I } t |
I T o |
o
TV TV 4 0¥ le_l t T+ 5,+1 Time

> V= W]‘tGA((T,‘,(;,'),'Zl) + ZiZI le[Ti,Ti+5i)5i ’ te [07 T] )
> A} = Zizl[TiV + 57 - t]+1t27',-" , te [0, T] ,
» E:=EU{w}.
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Problem formulation
[ le]

Output of trading algorithm and gain/cost function

Dynamics - Objective functional
> (t,x) € [0, T] x RY, XY, strong solution of

S S
Zx(s) = x—|—152t</ b(XZX(r),V,)dr+/ a( gx(r),u,)dW,
t t

; Zﬁ(xzx(f,-”—»ef,aiv)lm,ms) |

i>1
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Problem formulation
[ le]

Output of trading algorithm and gain/cost function

Dynamics - Objective functional
> (t,x) € [0, T] x RY, XY, strong solution of

XZX(S) = x—|—152t</ b(XZX(r),V,)dr+/ a(XKX(r),V,)dW,
t t
+Zﬁ 7,07 )1t<‘r”<s> .

i>1

» Controller maximizes the functional

veS N (v):=g( Zf (17467 =), &)

IEHET
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Problem formulation
[ le]

Output of trading algorithm and gain/cost function

Dynamics - Objective functional
> (t,x) € [0, T] x RY, XY, strong solution of

XZX(S) = x—|—152t</ b(XZX(r),V,)dr+/ a(XKX(r),V,)dW,
t t
+Zﬁ 7,07 )1t<‘r”<s> .

i>1
» Controller maximizes the functional

veS N (v):=g( Zf (17467 =), &)

IEHET
» over the admissible set
Stse={reS : vy=eforse(t,t+6)and Ay, ;=0} ,

FEUVREUX

(6,€) € Ry x E: initial state (remaining latency, paramé&fer§f=¥=e
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Problem formulation
o] ]

Output of trading algorithm and gain/cost function

Value function

» J(t,x;v) = E[MN¢«(v)] is well defined for all v € S and
admits at most polynomial growth.

» Technical reason related to the DPP, consider only admissible
trading strategies v € St 5 such that v is independent on F,
denote by S5 . (see [Bouchard and Touzi, 2009]).

» Value function

t,0,e

V(t,x,d0,e) = sup J(t,x;v).

I/GSt se
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Problem formulation
[ ]

Example: PoV Algorithm

Percent of Volume (PoV) Algorithm
Objective : Buy a quantity Qg of one stock S between 0 and
T >0 at a rate £’ compared to V; (instantaneously traded market
volume).
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Problem formulation
[ ]

Example: PoV Algorithm

Percent of Volume (PoV) Algorithm
Objective : Buy a quantity Qg of one stock S between 0 and
T >0 at a rate £’ compared to V; (instantaneously traded market
volume). Dynamics of (S, V, Q):
t t
5. = Sot [ (S, Vi)dr+ [ os(Sivi)dW.
0 0

t t
Ve = v0+/ v (S, Vr)dr—i—/ ov (S, V) dW, .
0 0

Remaining shares QY = Qo — fot Vsly 2o Vsds .
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Problem formulation
[ ]

Example: PoV Algorithm

Percent of Volume (PoV) Algorithm
Objective : Buy a quantity Qg of one stock S between 0 and
T >0 at a rate £’ compared to V; (instantaneously traded market
volume). Dynamics of (S, V, Q):

t t
S = So+ / 1s(S,, V,) dr + / o5(S,, Vy) dW, |
0 0

t t
Ve = v0+/ v (S, Vr)dr—i—/ ov (S, V) dW, .
0 0

Remaining shares QY = Qo — fot Vsly 2o Vsds .

T ~
min E[e(o - /O Seq(ve) Vedt + (St + (Q7, ST, V7)) (Q?)+)]

final cost

running cost

ccccccccccccccccccc

for ¢ convex, polynomial growth, 5, = S, + n(ve, Sty Vi).
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Viscosity characterization
L]

Domain of definition

Domain of definition of V

» Natural domain

D = {(t,x,8,€) € [0, T) x RY x (((0,00) x E) U{(0,w)})
t+0€[f, T)ore=w},

» which can be decomposed in two main regions:
> active region: § >0 and e # w

De»o = {(t,x,0,e) € [0, T) x RY x (0,00) x E: t+ €[5, T)} .

> passive region: e = w, and therefore 6 =0
D, :=1[0,T) xRY x {0,w} .
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Viscosity characterization
L]

Domain of definition

Domain of definition of V

» Natural domain

D = {(t,x,8,€) € [0, T) x RY x (((0,00) x E) U{(0,w)})
t+0€[f, T)ore=w},

> and can be completed by boundary regions
» Boundary of active region § -+ 0and t +6 — T:

Deo:=1[6,T) xRY x {0} x E,
Der:={(t,x,6,e) €[0, T) x RY x (0,00) x E : §<t+5=T} .
» Time boundary: Dt :={T} xRY x R, x E .

» Closure of domain D :=
{(t,x,6,e) € [0, T|xRI xRy x E: t+8 €[5, T) or e w&lhgux
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Viscosity characterization
@000

PDE derivation

Special value of V

» For0 =T —t and e € E (i.e., keep e until maturity):
V(t,x, T —t,e) =V(t,x,e) :=E [g(X,(T)) + F(X5(T), )]

Xi(s) = x+ /ts b(X:,(r), e)dr + /ts a(Xex(r), e)dW,] .
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Viscosity characterization
@000

PDE derivation

Special value of V

» For0 =T —t and e € E (i.e., keep e until maturity):
V(t,x, T —t,e) =V(t,x,e) :=E [g(X,(T)) + F(X5(T), )]

X;X(s)_x+/ts b(xgx(r),e)dr+/: a(XE (1), €)dW,] .

» Standard arguments imply that V' continuous, and for each
e € E, it is a viscosity solution of

—Lp(t,x) =0 on [0, T)xR? | o(T,x) = g(x)+f(x,e) onRY,

where the Dynkin operator £ defined for e € E, and a
smooth function ¢ .
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Viscosity characterization
(o] le]e}

PDE derivation

Passive region

» Rely on dynamic programming principle: for any [t, T]-valued
stopping time -

V(t,x,d,e) = sup E[V(ﬁ,XﬁX(ﬁ),Ag,w)

uest sie

+ ) XU+ 01, E)

IE]ItV’ﬂ

» For (t,x,d,e) € Dy, possible to immediately launch algorithm
with new set of parameters (&', €’) € [§, T — t] x E. Taking
9=t V(t,x,0,@)> M[V](t, x),

M[V](t,x) = sup V(t,x + B(x,€,d),d, e’)
(87,e")€ld, T—t]xE
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Viscosity characterization
(o] le]e}

PDE derivation

Passive region

» Rely on dynamic programming principle: for any [t, T]-valued
stopping time 1:

V(t,x,d,e) = sup E[V(ﬁ,XﬁX(ﬁ),Al’;,w)

VEStée

+ ) XU+ 00, E)

IEHzﬂ

> Also able to wait before passing a new order, i.e. choose
v = w on some time interval [t, t 4+ ¢’) with &' > 0, by
arbitrariness of ¥ < t + ¢

—LZV(t,x,0,) > 0.

Ngoc-Minh Dang
Optimal control of trading algorithms: a general impulse control approach



Viscosity characterization
(o] le]e}

PDE derivation

Passive region
» Rely on dynamic programming principle: for any [t, T]-valued

stopping time -

V(t,x,d,e) = sup E[V(ﬁ,XﬁX(ﬁ),Ag,w)

a
uestﬁ’e

+ ) FXE(TF +60), €0

=

» Dynamic programming principle:
min{—L%V(t,x,0,w); V(t,x,0,w)— M[V](t,x)} =0.
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Ngoc-Minh Dang
Optimal control of trading algorithms: a general impulse control approach



Viscosity characterization
[e]e] T}

PDE derivation

Active region

» Rely on dynamic programming principle: for any [t, T]-valued
stopping time 1:

V(t,x,d,e) = sup E[V(ﬁ,XEX(ﬁ),Ag,yg)

V65t5e

+ Y AX( +8Y). )

IG]I?19

» For (t,x,6,e) € Dg >0, cannot change the parameter before
the end of the initial latency period § > 0. Choosing 9
arbitrarily small:

—L+ 9 V(t,x,0,e) =0
05 ) ) bl N
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Viscosity characterization
[e]ele] ]

PDE derivation

Boundary conditions

» Active region:

V(t,x,6,e) = V(t,x,0,w)+ f(x,e), if (t,x,d,e) € Deyg,
V(t,x,6,e) =V(t,x,e), if (t,x,d,e) e De 1.

» Terminal condition:

V(t,x,é,e) :g(X)+f(Xae)7 if (t>X767e) € DT :

ccccccccccccccccccc
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Viscosity characterization
0

Viscosity characterization

Viscosity characterization

Define
(—Ce + %) (-, 0,¢€) on Dgso,
o(+,0,e) —(-,0,w) — f(x,e) on Dgp,
7—[(70 = QD( ,(5, e) V(, 6‘) on DE,T s
min{ — LZ¢(-,0,€) ; ¢(-,6,€) — M[p](")} on D,
30(‘7 ,e)—g()—f(-,e) on DT

Also define for (t,x,6,e) € D

V*(t,x,0,e) = lim sup V(t,x', 0, ¢€)
(t' x',8',e")eD—(t,x,5,€)
Vi(t,x,0,e) = liminf V(t X', €).

(t' x',8',e")YeD—(t,x,d,€)

ccccccccccccccccccc

Ngoc-Minh Dang
Optimal control of trading algorithms: a general impulse control approach



Viscosity characterization
oe

Viscosity characterization

Viscosity characterization (cont.)

The function V. (resp. V*) is a vicosity supersolution (resp.
subsolution) of Hy =0 on D.

Proof and comparison theorem omitted.
What remain to do?
» Numerical resolution by finite difference method
» Convergence verified similarly in [Barles and Souganidis, 1991].

€57 CHEUVREUX
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Numerical result

PoV theoretical case *e°
Percent of Volume Algorithm - Theoretical case
Parameters:
» Duration 7 hours i.e. 420 minutes, T = 7/(24 x 252),
discretized in 150 steps, d = 24 minutes.
€% CHEUVREUX
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Numerical result
000

PoV theoretical case

Percent of Volume Algorithm - Theoretical case

Parameters:
» Duration 7 hours i.e. 420 minutes, T = 7/(24 x 252),
discretized in 150 steps, d = 24 minutes.

> Sy = Soe 27 tToWe \where Sy := 2.18 and o = 68.10~ (68
bps, annual volatility of 20%), (V;):< T deterministic.
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Numerical result
000

PoV theoretical case

Percent of Volume Algorithm - Theoretical case

Parameters:
» Duration 7 hours i.e. 420 minutes, T = 7/(24 x 252),
discretized in 150 steps, d = 24 minutes.
> Sy = Soe 27 tToWe \where Sy := 2.18 and o = 68.10~ (68
bps, annual volatility of 20%), (V;):< T deterministic.
» Impact n(e, v) = 0.03(e/v)*1,
final cost c(q,v) = 0.03(q/(vAt))'L.
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Numerical result
000

PoV theoretical case

Percent of Volume Algorithm - Theoretical case

Parameters:

» Duration 7 hours i.e. 420 minutes, T = 7/(24 x 252),
discretized in 150 steps, d = 24 minutes.

> Sp = Spe 27 tToWe \where Sp := 2.18 and o = 68.10* (68
bps, annual volatility of 20%), (V;):< T deterministic.

» Impact n(e, v) = 0.03(e/v)*1,
final cost c(q,v) = 0.03(q/(vAt))'L.

» Set of regimes [0, 34], discretized in 30 equidistant steps
(maximal impact of approximately 42 bps of the initial stock
value Sp).
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Numerical result
000

PoV theoretical case

Percent of Volume Algorithm - Theoretical case

Parameters:

» Duration 7 hours i.e. 420 minutes, T = 7/(24 x 252),
discretized in 150 steps, d = 24 minutes.

> Sp = Spe 27 tToWe \where Sp := 2.18 and o = 68.10* (68
bps, annual volatility of 20%), (V;):< T deterministic.

» Impact n(e, v) = 0.03(e/v)*1,
final cost c(q,v) = 0.03(q/(vAt))'L.

» Set of regimes [0, 34], discretized in 30 equidistant steps
(maximal impact of approximately 42 bps of the initial stock
value Sp).

» [ is the identity, simplifies the numerical resolution since linear
in y-variable.
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Numerical result
o] Te}

PoV theoretical case

PoV algorithm - Case flat market volume V; = 100

Constant market volume

Rasaganty

n

il
!
1=

|
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‘\“‘\“\““‘\\

IR \
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PoV theoretical case

Numerical result
[e]e] ]

PoV algorithm - Case U-shaped volume
V; = 100(1.1 —sin(7t/T))

U-shaped market volume
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Quantity ¢, buy
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Numerical result
0

PoV real case

Percent of Volume Algorithm - Real case
Volume and volatility estimated from real data (France Telecom
Jan. 2008 to Dec. 2008), normalized such that average daily
volume = 2000.
So = 10, Qg = 50, maximal rate E,zx = 0.1.
Functions: n(e, s, v) = 0.2e!1, ¢(q,s,v) = 0.3¢", £(y) = (y7)?.

1.4

== trad. volume
1.2 = = =mk volume density
== mk volatility

2 @
® o e

trading volume

I
a

0.2
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Figure: Volume - Volatility - Average trading ‘curves
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Numerical result
oe

PoV real case

Some simulated trajectories

10.3 14 10 15
1.2
1
o 9.8
082 - o [
2 g P A
0673 - H Seo 9 1%y
= 96" . ‘u 5y " ,' "
0.4 e ! . L c ',
N § 8 08 ¢
02 v ! Vv
] i ! vy
0 gal 4 PO WY B A .
0.2 0.4 0.6 0.8
Time
Figure: Simulated price and Figure: Simulated price and
volume - 1 volume - 2 % CHEUVREUX
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Thank you for your attention
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