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The Model
Probability space: (2, F,P).
Brownian Motion: W(-) = (W1(-),..., W4(-))*
Information filtration: F = (F/")i>0

Complete Financial Market:
e finite time horizon [0, T]

e a riskless asset B(-)

e d stocks S;(-), i=1,2, ....,d
such that

dB(t) = r(t)B(t)dt, B(0) =1,

d
dSZ(t) — S,L(t) bi(t)dt —I— Z O'Z](t)dW](t) , 1= 1,

=1
Interest rate: r(-) is bounded.

Vector of rates-of-return: b(-) = (b1(-),...,by(-))*
IS integrable almost surely.

Volatility matrix:  o(-) = {04;(:) }1<i j<d
IS square-integrable almost surely and
o(t) has full rank for every ¢t.

All processes are F—progressively measurable.
No anticipation of the future.



Economic agent: At each time t he can decide

e proportion (portfolio) m;(t) of his wealth X (¢) to be
invested in the th stock

e remaining amount is invested in the riskless asset

e consumption rate ¢(¢t) > 0

e initial endowment x > 0.

For X () = X®™¢(.) we have the equation

i=1 Si(1) i=1
— c(t)dt
= [r()X () — c(®)]dt + X ()7 (£)o () [dW (t) + D (t)dt],
subject to the initial condition X(0) = x > 0.

d | d
AXE) = X(@®) |3 me) - 2 | (1 s m(t)) r(t)dt]

Market price of risk: 9(t) £ o= 1) [b(¢) — r(¥)1]

Equivalently, we have

X (t) te(s) , t X(s)
B o B&™ =T o Bs)

*(8)o(s) [dW(s)w(s)ds}

Utility function: «: [0,T] x RT = R,
such that u(t,-) is strictly increasing, strictly concave,
of class C1(RT1), and «/(¢,0F) = oo, u/(¢,00) = O;

Standard of living: average of past consumption.
For «(-),d6(-) > 0 F-adapted processes,

2(t) = 2(t;c) =z e~ Jo () + /Ot d(s)e” fsto‘(v)dvc(s)ds
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The Habit-Forming Maximization Problem

Value function: For given (z,z) € D

T
Viz,2) 2 sup E[/ w(t, c(t) — 2(t: ¢))dt
(re)eA(z,z) |0

Admissible controls: (m,¢) € A(x,z) such that
e () >0

o XT:™C(¢) > 0, for all t € [0,T]

o c(t) — 2(t;¢c) > 0, ~  “addiction”

Optimal Policies by Detemple & Zapatero (1992):

e J optimal pair (mq,cg)

e For zo(1) = 2(-,cg) and I £ (v/)~1:RT 5 RT

co(t) — zo(t) = I(¢,yol (¢)) > O

optimal scalar: yg € RT
“adjusted” state-price density: for E¢[ - 1 = E[ - |F(¢)]

T s
F(t) 2 H(t) +6(¢) - B (/t ol (5(v)—a(v))de(S)dS>
state-price density: H(t) £ e~ fgr(s)dSZ(t)

density:  Z(t) 2 e~ Jo?" ()W (s)=3 g [9(s)]%ds



Theorem 1. V (-, z) satisfies all the conditions of a util-
ity function as defined previously, for any given z > 0.

Optimal wealth: Xg(-) = X%70:€0(.) is given by

T
el H(s)co<s>ds] ,

and substituting the optimal cg(-) we can show that

Xo(t) =

Ey

T
Xo(t) —W(t)zo(t) = Htt)Et [/t F(S)I(s,yor(s))ds],
where
s TG —a@)dH(s) _ .
W(t) £ B, /t e HGy 4| and w(o) =w.

Theorem 2. The effective state space of
(Xo(t),zo(t)) is identified as the random wedge

Dy 2 {(«,2)) e RT x [0,00); 2’ > W(t)2'},
Dy £ {(0,2); 2/ €[0,00)}, and Dy = D.

e W(-) is the “marginal” cost of subsistence con-
sumption per unit of standard of living at t.

Next Goal: Dependence of the optimal pair (g, co)
on the wealth Xg(-) and standard of living zg(-).

Assumption: ¥(-) bounded away from 0 and oo

Change of measure: PO(A) £ E[Z(T)14], Ac F(T)

New d—dim BM: Wy(t) 2 W(t) + J§9(s)ds under P°
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For (t,y) € [0,T] x RT and t < s < T, consider
o Z'(s) £ Z(s)/Z(1),
e H'(s) £ exp {_/t r(v)dv} Z4(s),

o Mt(s) £ H'(s) + 6(s) - Es < / ! eff<5<v>—a<v>>det(9)d9>

Assumption: r(-) —6(-) + a(-) is deterministic

o (s) = H'(s)u(s), with
n(t) £ 1+ 6(H)w(t)
w(t) 2 | Lo (Cr@)+6()—a)dv gy — yy(p)
t

Key Process: YW (s) 2 ylt(s), t<s<T

Rewrite the relationship derived for Xg(-) and zg(-) as

Yy (0:90) (¢)
p() )7

Xo(t) —w(t)zo(t) = X (t,
in terms of

Random field: ¥ :[0,7] x RT x Q2 — R+t  given by

x(t,y) £ EY [ /t e @61, yy<t’1><s>>ds]

In the following slide, we recall a generalized ItO-
Kunita-Wentzell formula for random fields.



Generalized Ito-Kunita-Wentzell (GIKW): Let the
random field F be of class C9%2([0,T] x R") and satisfy

t t
F(t,%) :F(O,x)—l—/o f(s,x)ds—l—/o o* (5, X)dW (s),

where g = (g(1) ... g(d) are ¢0:2 F-adapted random
fields, and f is a €91 random field. Furthermore, let
X = (XM, ... X)) pe a vector of continuous semi-
martingales with decompositions

X0 () =xX0(0) + [ b (s)ds + / "D () dw (s),

where h() = (W1 . hd) js an F-progressively
measurable, almost surely square integrable vector pro-
cess, and b(’i)(-) IS an almost surely integrable process.
Then F(-,X(:)) is also a continuous semimartingale,
with decomposition

F(t,X(t}) — F(o,X(O)) + f: /o t in(s,X(s))dx(i)(t)
1=1
—I—/tf s , X(s) ds—l—/otg*(s,X(s))dW(s)
n Z Z/ (J) s X(s))h(i’j)(s)ds

] 1:=1

+ 3 / Frc, (8, X (8))d(X®, X)) ().
zk 1

Notation: Consider the class of pair random fields
Gy 2 Cp([0, T); L2(2; C3(RT)))
x ]LI%(O,T; L2(Q; C2(RT: Rd)))
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The Role of Stochastic PDE'’s

Under reasonable assumptions on the utility prefer-
ences (u, I,...), and the study of parabolic BSPDE's
by Ma and Yong (1997), we reach the following result.

Proposition 3.

There exists a random field W* such that the pair
(X, W*) € Gp is the unique F-adapted solution of the
linear parabolic BSPDE

—dX(t,y) = EIIﬂ(t)IIQyQ%yy(t, y)
+ (912 = (1)) yXy(t,v) — r()X(L,y)
— POy () + n®I(, yu(t))] dt
— (Wi, y))* dWo(t) on [0,T) x Rt

X(T,y) =0 on RT.

Remark 4.
Integrating over [t,T], the above BSPDE yields the

semimartingale decomposition of the process X(-,vy),
for all y € RT.

For t € [0,T)
e X(t,-) is strictly decreasing,
e X(t,07) =00, X(t,00) =0

Inverse random field: N(t, )2 x1(,)
of class CF<[O,T); C3(R+)).



Feedback Formulae

Inverting X in the equation of Xp(-) and zg(-), we have

y(Ov0) (1) = u(£)3(2),

where

3(t) 2 (¢ Xo(t) — w(t)z0(t)).

Then the optimal consumption process co(-) is ex-
pressed by

co(t) = zo(t) + I(t, u(t)3(1))

Theorem 5a. The optimal consumption policy cg(-)
admits the stochastic feedback form of

co(t) = €(t, Xo(t),z0(¢)), 0<t<T,

determined by the random field

¢(t,z, 2) 2 2+ I(t, u(®)Y (@, — w(t)z)), (z,2) € Dy



Employing the GIKW's rule to the equation of Xg(+)
and zg(+), and using the semimartingale decomposition
of Proposition 3, we obtain the integral equation

Xo(1) tcg(s)
B ' Jo B ™
_ t 1 J(s) X/ ~ )
= r — 0 B(s) [?9(8)3%(8) — WV (S,J(S))] dWo(s),

where J.(t) £ %(t, Xo(t) — w(t)zg(t)>.

A comparison of the later with the wealth equation
implies that

J(®)
Jz (1)

Xo(®)mo()o(t) = — !?9(75) - W%(t,ﬁ(t))] :

Theorem 5b. The optimal portfolio strategy ng(-) ad-
mits the stochastic feedback form of

mo(t) = P(t, Xo(t),20(t)), 0<t<T

determined by

X,z é_l o* ~1 Qj(t,x—w(t)Z)
P(t,2,2) 2 = (") [mt)%(t,x_w(t)z)

— \U%(t,@<t, x — w(t)z)) , (z,z) € Dy.
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Dynamic Programming
Generalized time horizon: [t,T].

Value random field:

T
V(t,z,z) = esssup E; [/t u(s,c(s) — z(s)) ds|,

(m,c)
Extension: V(O0,-,-) =V(.,-)
By analogy with the previous analysis, we get
V(t,z,2) = (Yt z—w(t)2)), (z,2) €Dy, te[0,T),

where

&(t,y) = E; /tTu(s, I(s, yY(t’l)(s)))ds]

Boundary conditions:
V(T7a’;7 Z) — O?

: v Cu(s,0h)ds, v oD
(xaz)l—rp(X,C) (t,az,z) —/t ’U,(S, ) S, <X7C> c .

Likewise with X,

e 3 random field &% such that

o (&, d%) € Gy is the F-adapted unique solution
of another linear parabolic BSPDE
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Stochastic Hamilton-Jacobi-Bellman(HJB) Equation

T heorem 6.
The pair of random fields (V, =), where

=(t,z,2) 2 q><’5(t, V(t, z — w(t)z))
— Ytz — w2V (V2 — w(b)2)),

belongs to Gy and is an F-adapted classical solution
of the stochastic HJB dynamic programming PDE
(cf. Peng (1992))

1
—dV(t,z,z) = esssup {—||J*(t)7r||2:c2Vm(t, T, 2)
0<c< 2
rcR4

+ _fr(t)a:‘ —c+ W*a(t)ﬁ(t)wl Vo(t, z, 2)

+ :5(t)c - a(t)z] Va(t,,2)

+ o (t)z=x(t,z,2) + u(t,c — z)}dt

— =, z,z2)dW (), tel0,T), (x,2z) € Dy

with the boundary conditions of the previous slide.

Remark 7.

The optimal values for the above maximization are
provided by (B(¢,z,z),¢(t, x,2)) .
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Carrying out the maximization, the stochastic HJB
takes the

Conventional form:

AVt z, 2) = %(Vm,vx,vz, = z)dt
— B(t,z, 2)dW (1),
where
H(A,p,q,B,t,x,2) = —%Ilﬁ(t)p + B
+ |r()z — 2 — I(t,p — 6(t)q)|p
+ (6@ — a®)z 4+ 5 I(t,p - 5(t)q)|q

+u(t, I(t,p— 5(t)q))
for A<O, p>0, g<0and B €R.

Remark 8.

We have achieved a concrete solution of the strongly
nonlinear stochastic HJB equation by solving instead
the two linear equations of X and &.

Uniqueness: Necessary and sufficient condition for

Convex dual of V :

V(t,y) £ esssup {V(t,aﬁ, z) — (az — w(t)z)y}, y € RT.
(z,2)€Dy
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Identity: V(t,y) = &(t,y) — yX(t, ),

Theorem 9.
The pair of random fields (V,A), where

/\(ta y) = (b@(ta y) o yw%(t7 y))

belongs to Gy and is the unique F-adapted solution
of the linear BSPDE

LAVt y) = %\wwn?y%y(t, y) — ()Y Vy(ty)

— 9 () yNy(t,y) + a(t, yu(t))|dt

— AN*(t,y)dW () on [0,T) x RT,
V(T,y) =0 onRT.

Remark 10.

To compute V:

e resolve the above equation for (V,A)

e invert the dual transformation to recover V as

V(t,z, z) = ezsegR?f {V(t, y)+ (w—w(t)z)y}, (xz,z) € Dy.
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Deterministic Coefficients

Case of deterministic model coefficients:

e asset prices become Markov processes

e the feedback formulae for (mg,cg) reduce to
the deterministic functions

C(t,z,2) 2 2+ I(t, w(Y(t, x — w(t)z)),
y(t,x — w(t)z)
xVx (t, x — w(t)z) ’

N(t,z,2) & —(o*() 19(t) -
where

V(t,-) is the inverse of the function

X(t,y) 2 EO [ /t e ft‘sr(“)dvu(s)z(s,yY“’”(s))ds] .

Corollary 11.

An investor

e needs only his current level of Xg(t) and zg(t),

e doesn’'t need entire history of the market up to t¢.
Therefore (Xo(t),zo(t)) is a sufficient statistic for
the optimization problem.
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An Example: Logarithmic Utility

Let w(t,z) = logx.
We have I(t,y)=1/y and a(t,y)=—logy—1.

Case 1: Deterministic Coefficients.

Unique solution of the Cauchy problem for V:

5(t,y) 2 —v(t)log (y,u(t)) — m(t), where
v(t) =T —t

o L W (5)
mty= [ [1-@ -9 (Enms)n +T<3>‘M<s>>]d8°

T herefore inverting the dual transformation:

%0 0
y T

X(t,y) = Y(t, )

x— w(t)z

v(t)p(t)

V(t,2) = v(1) log ( ) + () — m(®),

and the feedback formulae are

x — w(t)z
v(tp(t)
N, 2) = (0 (1) " F 9(8)~

C(t,x) =z+

— w(t)z.
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Case 2: Stochastic Coefficients.

By analogy with the deterministic case, we introduce
in this case the F-adapted random field

6(t,y) 2 —v(t) log (yu(t)) — m(t)

/tT m(s)ds] :

Moreover, the completeness of the market stipulates
the existence of an R%-valued, F-progressively mea-
surable, square-integrable process #4(-), such that the
Brownian martingale (cf. Karatzas & Shreve (1991))

/OTm(s)d,s]

has the representation M(t) = M(0) + [§£*(s) AW (s).

with

v(t) =T —t, m(t) = E}

Dﬁ(t) — Et

It is verified directly that the pair (b,£) solves the
BSPDE for (V,A). Consequently,

v(t)

xe)="" w0 =""

and
x — w(t)z

V(t,z) = v(t)log ( O ) +u(t) — m(t).

For this particular choice of utility preference, X (and
so 2)) is deterministic, and the feedback formulas are
the same as those of the previous case.
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Open Problems

(1) Incomplete Markets:
e Number of stocks smaller than the dimension of W ()
e Compute the optimal policies

(2) Exponential utility function «: [0,T] xR — R
e c(t) > z(t; ¢) is removed (non-addictive habits)
e Optimal policies exist by Detemple & Karatzas (2003)

e Develop the Dynamic Programming T heory

(3) Generalized utility function u(t, c(t), 2(t))
e Compute the optimal policies
e Develop the Dynamic Programming Theory
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