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Contribution

Extends existing results to recursive preferences for agent and principal

Special cases: time-additive utility, stochastic differentiable utility,
differences in beliefs, robust control and multiple-prior formulations,

Characterize general solution as FBSDE system

@ Solution simplifies considerably with translation-invariant (generalized
exponential utility) and scale-invariant (homothetic) preferences.

@ Solution reduces to Riccati ODE system for quadratic penalties and
affine-type state variable dynamics.
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@ All uncertainty is generated by d-dimensional standard Brownian
motion B over the finite time horizon [0, T].

@ The set of consumption plans is the extended convex set C C L(R).
For any ¢ € C, we interpret ¢; as a consumption rate for t < T, and
c7 as lump-sum terminal consumption.

X, a collection of stochastic processes is extended convex if V xi,x» € X
there is a process 6 = d(w, t; x1 x2) > 0 s.t.

axp+ (1—a)x € X

for each a(w, t) that satisfies —6 < a <14 4.
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® The set of effort plansis £ = {e € L»(E); e € E;; YOSt < T}
with er = 0(no lump-sum terminal effort), where E; C E C RY,

@ The impact of agent effort is modelled as a change of probability
measure.

@ Define the probability measure P¢ corresponding to effort e , so by
Girsanov's Theorem dBf = dB; — e;dt is standard Brownian motion
under P€.
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@ The agent’'s utility U (c, e) is part of the pair (U,ZU) assumed to
uniquely satisfy the BSDE

dU; = —F <t, c e, Ut,zy) dt +xV'dBe, Ur=F(T,cr). (1)

e The principal’s utility V (c, e) is part of the pair (V, £V assumed
to uniquely satisfy the BSDE

dV, = -G (t, ct, vt,ztv) dt+V'dBE, Vr=G(T.cr), (2)

Remark: ¢ € C is admissible for the agent if Up(c) > K (participation
constraint)
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Statement of the Problem

e Given any ¢ € C, the agent chooses effort to maximize his\her utility:

Uo(c) =sup Uy (c,e).

eef

Letting e (c) denote the optimal agent effort level induced by
consumption process c, the principal's problem is:

sup Vo (¢, e(c)) subject to Up (¢) > K.
ceC
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Agent Optimality

Theorem

Fix some ¢ € C and suppose integrability Conditions holds. Then e € £ is
optimal if and only if for any & € £

F (ct, e Ut,zy) Lyl > F (q, &, Ut,zgf) +xV%, teloT)

3)
where Uy = Uy (c, e) and =V = £V (c, e) solve the BSDE (1).

v

The proof is mainly the use of Comparison Theorem for BSDEs. O
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Agent Optimality

If the solution is interior, then (3) is equivalent to
—Fe (tocten UL T ) = 2.

We will assume that above equation can be inverted to get optimal effort
e =1 (w, t, c, U,ZU) )
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Principal Optimality

Using e; =/ (w, t,c, U, ZU) , the principal’s problem is

sup Vo (¢) subject to Up (c) > K (4)
ceC

where (U, 2V, V,2Y) satisfy the BSDE system

dU; = —F (tc Unzl)de+x'dB, Ur=F(T.cr), (5)
aV. = _(;<t,ct,vt,zy,ut,2§f)dt+2tV/dBt, Vr =G (T.cr).

with modified aggregators.
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Gradient and Supergradient density

Let v : C —IR be a functional. For any ¢ € C, the process 7 € L;(R) is
a supergradient density of v at c if

;
v(ic+h) —v(c)<E [/ n’thtdt—i—n/ThT] .,V hsuchthat c+ heC,
0

and 7T € L5(R) is a gradient density at c if

T h) —
E [/ n’thtdt+n'ThT] :nﬂ;”(”“a) V() kst ctanec.
0 o

v
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Gradient and Supergradient density

The computation of 71, the densities above, require the following

.. / . .
R?-valued adjoint process ¢; = (¢}, &), with some initial value & € RR?
and dynamics

— G (t) 0 Gsv (t),dBt 0
e ( Gtvf(t) Fu (1) )Sth( Czu (t) dB; Fx(t) dB >€t' (©)
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Gradient and Supergradient density

Lemma

Suppose ¢ € C and that ¢ satisfies (6) with initial value ey € R3.
e Under certain Integrability Condition {[G. (t), F. (t)]e:; t€ [0, T|}
is a utility gradient of [Vg (c), Up (¢)] o at ¢ .
o Under Integrability Condition (different from the previous part)
{[Ge (t), Fc (t)]&r; t €0, T]} is a utility supergradient of
[Vo (), Uy (c)]eo atc.

One of the methods to prove the above lemma is to use derivatives of the
solution of BSDE. A result in this direction can be found in Briand and
Confortola(2006). O

Mark Schroder, Sumit Sinha and Shlomo Lev: May 2010 13 / 27



Principal Optimality

Let c € C, (U,EY, V, V) solve the BSDE system (5) , let € be the
adjoint process. Assume appropriate integrability condition holds. Then c
solves the principal’s problem iff there is some k¥ € R such that

o= (L&), [G(t),F.(t)]ee=0, telo,T], (7)
xk {Up (c) — K} =0.

The proof is based on a version of Kuhn-Tucker Theorem.
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Principal Optimality

Define
GC (t, Ct, Vt,Zy, Ut,Zy) GC (T, CT)
Ay = — = , t< T, Ar=——2-, (8
! Fe (t ct, Ur, 2Y) T (T.cr) ()
Under the FOCs (7) we have
v
€
/\t - iV' (9)
&t

where gy = (1,x)’ for some ¥ > 0. From (9) we get by Ito’s Lemma:
dA; = {/\tF'U (t) = AeGy (t) + Gy (t) — CﬁvZ?} dt +%¢'dB:,  (10)
where X = A, {Fx (t) — Ggv } + Gyu (1).

We will assume that (8) can be inverted to present consumption as
Ct = (P ()Lt, Vt,Zy, Ut,Zy):
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The first-order conditions for the problem is a FBSDE system for
(U,ZU, V,ZY,A):

dU, = (t ¢, Ut,zgf) dt +xV'dB, Ur =F (T, cr),

dV, = -G (t e Vo 2V, Ut,zy) dt +%V'dB;, Vr=G (T, cr)

T {/\ Fu(t) — A:Gy (t) + Gy () — vazﬁ} dt + XV dB,,
where X} = At {Fs (t) — Ggv} + Gsu (t), Ag =K >0,

A
Uo 2 K, K(Uo—K):O,
¢

Ct = (t,)\t, Vt,Zy,Ut,Zéj> , CcT :(P(t,/\‘[')
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Another approach to solving Principal’s problem

o The function J: Q x [0, T] x C x E x R — RR? is well-defined
implicitly by

e=1I(wtcUJ(wtcel)), ecE (11)

@ With this invertibility condition, the agent’s optimal effort
er = I (t, ¢, Ur, ZY) is equivalent to Y = J (¢, ¢t e, Uy).

o Substituting ZY = J(t, ¢;, e, U;) into agent's utility function and
assuming that participation constraint is binding we get:

dUp = — {F (t,ct,er, Up, J(£)) + J (8) e} dt+J (t) dB:,  Up = K.
(12)
The lump-sum terminal consumption implied by effort plan e is

cr=F (T, Ur), (13)
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The principal’s problem is equivalent to choosing e and {¢;;t € [0, T)} to
maximize Vp (c, e) subject to the initial value of the agent utility (now a
forward equation) satisfying the participation constraint:

sup W (c, e) subject to

c,eeCx€&
dU; = —{F(t.cr.er, U, J (1)) Y dt+J(t)' dBE, Uy = K,
dv, — _G(t,ct,vt,z;/> dt+xV'dBE, Vr=G (T, F (T, Ur))
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Lemma

Under Integrability conditions the principal’s optimality conditions are
equivalent to

0

Ge (t) + AcFe (2) + Je (t) {AtFZ (t) = AeGyv (t) — zg} (14)
0 = =¥+ () {Ath (t) — AeGyv (t) — 2?} .

and

dAe = {AcFu (£) = MGy (£) = Ju (8)' [Z2 = AcFs (8) + A Gov (8)]

Ge (T, F~1(T,Ur))

—GLxM dt + 2V dBe Ar = — .
GZ t} + t t T FC(T,Ffl(T,UT))

The prove is based on the fact e = I (w, t,c, U, J (w, t, c, e, U)) and the
previous principal optimality conditions(See (8) and (10)). O
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Example (Cvitanic, Wan & Zhang, 2008)

Suppose there is no intermediate consumption and the penalty for agent
effort is quadratic:

F(tceX) = —%qe’e, G(tc,V,2)=0 t<T,
F(T,CT) = f(CT), G(T,CT):g(XT—CT),

for some g > 0 and cash-flow Xr.

o Agent optimality implies =V = J (¢, e;) = qe;, and

M ope g (Xt —c1)
ahe=zlass, Ar=ETT
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Example Contd.

@ The principal’'s optimality condition reduces to Zl/ = qZ? which
implies the key simplification dV; = qdA;. So for some constant 8

p=g(xr—cr)—q (0T (15)

which can be used to solve implicitly for cr as a function of B and
Xr.

@ To solve for B, observe that us = exp (U;/q) is a Martingale (By Ito
Lemma, du; = ueldB;). Since up = )

exp (K) = E(ur) = Eesp (117

@ The martingale representation theorem gives the optimal effort e.
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Translation Invariant(TI) Preferences

The agent's and principal's aggregators are of the form
F(w tcelUZ = f <w,t,,YCU— U,e,z> L F(T,o)=—

G(wtc VX = g(w,t,X(w,'y\t/)_C—V,Z),
X(w, T)—c

G(w, T,c) = v

for some constants 7Y, 9yY € R, and some functions
f:Qx[0,T] xR - Rand g:Qx [0, T] x R*4 — R, which we
refer to as absolute aggregators. X (w, t) is the cashflow process.
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Translation Invariant Example

Under the Tl preferences, at the optimum (c,e), Ay =21, te€|0, T].

@ We demonstrate an example with TI preferences with quadratic
volatility and effort penalties ,where we get explicit expression for
optimal (c, e).

f (w, t,xY, e,Z) = n (w, t,xU> +pY (w, 1) (16)
1 1
—EqU (w, t) % — qu (w, t) €e,

g (w, t,xV,Z) = hv (w, t,xV> +pY (w, t) T — %qv (w, t) %

o where xV = ¢; /Y — U;, x! = Xfy\,cf — Viand ¢, 9V, 9" € L (Ry)
represent the effort and risk-aversion penalties, and pY, p¥ € L (le)
can be interpreted as differences in beliefs of the agent and principal
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Translation Invariant Example Contd.

Let y
1+ AgSq
We = e Vt : e U’ (17)
1+ Agfqy +aia;

then J(t, e;) = gfe: and the optimal effort satisfies

Wi Y 1— Wi ( U v
e = > + pf —p ) ) 18
CoAgeTt T gegf TP T 1o

and optimal xtU =¢ (t, f;—@ — Yt), which we get from Principal’s
optimality equation.
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Translation Invariant Example Contd.

Define Yt = Vt + AUt
The BSDE for Y is
X 1
dY, = — {H (t, T‘t/ — Yt> +ul +p'2) — thyzf’zty} dt +x)' dB;
(19)
XT

yr =20
,),V

where

H(w, t,x) =h" (0, t, A (w, t,x) +x) +AhY (w, t,¢ (w, t,x)),

1A (1 —we) 2
Y t U Vv
e = 2 qéj Pt — Pt
PtY = WtPtU+ (1 - Wt) Ptv,
1 1
Y U
a: )\(qt Wt_q?>,
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Translation Invariant Example Contd.

In the case of constant g€, gV and ¢, we can rearrange (19) to obtain an
expression for ©)'dB;, and substitute into FSDE for U. The terminal
consumption is given by

T
CT:WXT+’)/U(1—W) <K—/ hU (t,XtU>dt>
0

Vi (vo - /OT B (ex) dt) +

L yw(@l—=w) [T ay|? vw(l—=w) Ty Yy

g b [F G | (o - et) e
2
)dt

Wi/1—w T 2 1—w
+7 U / ‘ o eqU ‘
q 0 q-q

U

1—w Ty v)’
— dB;.
qU /0 (Pt Pt t

v

Pt ’

Pt !

Pt _PLY

|

+7
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THANK You
The working paper is available at
http://papers.ssrn.com/sol3/papers.cfm?abstract id=1573246.
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