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Realized Variance

Let S denote a discounted asset, and X its logarithm.

Realized Variance

The annualized realized variance of X over the period [0, T]
subdivided into n business days 0 =ty < --- < t, = T is given by

1 & Se \Y 1< )
RVn(T) = — <|og tk) == (Xe — X
T f Sty T k:l( * - 1)

m A considerable number of financial instruments use realized
variance as an underlying: variance swap, volatility swap,
calls/puts on realized variance
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Approximation by Quadratic Variation (1)

m Standard pricing approach: substitute annualized quadratic

variation QV(T) = +[X, X]1 for realized variance.

RV,(T) = QV(T)

m Quadratic variation is the limit in probability of realized
variance, when T stays fixed and the number of increments n
tends to infinity.
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Approximation by Quadratic Variation (2)

m The approximation via quadratic variation works well for
claims with (approximately) linear payoffs: variance swaps,
volatility swaps.

See Biihler [2006], Sepp [2008], Broadie and Jain [2008]

m The approximation is not sufficient for claims with non-linear
payoffs like calls/puts and for maturities shorter than 3
months.

See Biihler [2006], Gatheral [2008].
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Bihler's Example

ATM Calls on realized variance and quadratic variation
(for a flat variance swap term structure)
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ATM call in the Heston model. Plot taken from Biihler [2006].



This talk addresses the following questions:

How big is the discretization gap between options on
quadratic variation (QV) and realized variance (RV)?

H How can options on the realized variance be valuated exactly?

We focus on ATM calls, i.e. options with payoff
(RVa(T) —E[RVa(T)])*

where E [RV,,(T)] is the swap rate.
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The Discretization Gap

As a proxy for the short-time behavior of options on realized
variance we use

lim B [(RV(T) ~ E[RV(T)]) ]
for options on quadratic variation we use

lim E[(QV(T) —E[QV(T)])"].

T—0

The discretization gap is the difference between the two:
lim {E[(RVA(T) —E[RVA(T)])"] —E [(QV(T) —E[QV(T)D)"]} .

Note that RV4(T) is the realized variance over a single business
day, i.e. RVi(T)=+X2
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Underlying: Lévy process

We assume that the underlying X follows a Lévy process:

X can be characterized by its Lévy triplet (b, a2, F), or by its Lévy
exponent

0.2

Y(u) = bu + 7u2 + /(e“X — 1 — uh(x))F(dx).

We also assume that the first two moments of X exist. In this case
X has a decomposition

Xt:bt+UWt+Lt

where L is a centered pure-jump process of finite variance, and W
an independent Brownian motion.
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Results for Lévy processes — Quadratic variation

Theorem (K.-R. and Muhle-Karbe (2010))

For a Lévy process X a call on quadratic variation satisfies
lim B[(QV(T) ~ E[QV(T))*] = 2,

where v = [ x2F(dx).

Note: v2 is the variance of the pure jump component L.
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Results for Lévy processes — Realized variance

Theorem (K.-R. and Muhle-Karbe (2010))

For a Lévy process X a call on realized variance satisfies
V2 V2
lim E [(RVA(T) —E[RVA(T)])*] = 0?P <2> +v2Q <2> :
T—0 o o
where v2 = [ x2F(dx) and P(r) resp. Q(r) are strictly decreasing

resp. increasing functions on [0, 00), given by

2(1+r)

P(r) = mexp(l+r)’

and Q(r) =2¢(vV1+r)—1,

with ®(.) denoting the standard normal distribution function.
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Special cases — Pure diffusion

Pure diffusion — no jumps:
}iLnOIE [(QV(T) -E [QV(T)])*] =0
lim E [(RVA(T) —E[RVA(T)])T] = \/Za2 ~ 0.4802

Under mild conditions these results also hold in pure-diffusion
models with stochastic volatility (but without leverage effect).
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Special cases — Pure jump

Pure jump process — no diffusion:

lim  [(QV(T) = E[QV(T)])*] = 2

lim B [(RVA(T) ~ E[RA(TI)*] =

The discretization gap vanishes completely in pure-jump models!

In true jump-diffusion models the interaction between jump and
diffusion component is surprisingly complex.
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Numerical Confirmation

Numerical results for 2 Lévy-based models with 3 different
parameter sets:
m The Kou model is a jump-diffusion model with
double-exponentially distributed jump sizes.
m The CGMY model is a pure jump model introduced by Carr,
Geman, Madan and Yor.

m We use calibrated parameter sets from Sepp [2008] and Carr
et al. [2005] respectively. For the Kou model we also look at
the effect of reducing the diffusion volatility o from 0.3 to 0.2.
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Figure: ATM call prices on normalized quadratic variation resp. realized
variance in the Kou model for 0 = 0.3. The analytic short-time limits
from the corresponding theorems are 0.0718 resp. 0.0980.
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Figure: ATM call prices on normalized quadratic variation resp. realized
variance in the Kou model for 0 = 0.2. The analytic short-time limits

from the corresponding theorems are 0.0706 resp. 0.0773.
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Figure: ATM call prices on normalized quadratic variation resp. realized
variance in the CGMY model. The discretization gap vanishes as
predicted.
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Numerical Methods

How did we produce the numerical results?

m Monte-Carlo simulation can be problematic for Lévy
processes: transition density not known in closed form, jumps
may have infinite arrival rate, etc.. ..

m For quadratic variation Fourier-based methods have been
described in the previous talk.

m For realized variance we propose analogous methods in [K.-R.
and Muhle-Karbe (2010)].
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Suppose the Laplace transform E e vX¢ | of the squared Lévy
process is known in the half plane H; = {u € C: Re(u) > 0}.

Applying the Fourier-pricing approach of Carr & Madan yields:

Fourier Pricing for calls on realized variance

E [(RVa(T) = K)] =

=E[RVA(T)] — K + % /;HOO Re (e::E [exp (—uxg)]”) du

where @ >0 and § = T/n.
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Fourier Pricing: The Laplace transform of X?

Theorem (K.-R. and Muhle-Karbe (2010))

Let X; be a Lévy process, whose characteristic exponent 1)(u)
satisfies a mild analyticity condition. Let Z be an independent
standard normal random variable. Then

E [e_“sz} — E [etw(iZ\/ﬂ)}
holds for all u in the complex half-plane Hy = {u : Re(u) > 0}.

m Replaces the integration with respect to the law of the Lévy
process by an integration with respect to a normal distribution.

m The analyticity condition holds e.g. for the Kou and the
Merton model, the NIG, the Variance Gamma and the CGMY
process.
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m In many cases quadratic variation is not a good proxy for
realized variance, when pricing of call/put options on realized
variance is concerned.

m The difference in prices is most pronounced in diffusion
models, decreases when jumps are added, and vanishes
completely in pure-jump models.

m We have presented methods for exact valuation of options on
realized variance by Fourier methods in the context of
exponential-Lévy models.

m Extensions to stochastic volatility models with jumps are work
in progress.
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Thank you for your attention!

For details see:

KELLER-RESSEL, M. and MUHLE-KARBE, J. (2010). Asymptotics and exact
pricing of options on variance. arXiv:1003.5514.
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Generalization of the realized variance result

Theorem (Generalized short-time limit)

For a Lévy process X a call on realized variance satisfies

lim B [(RVA(T) — kE[RVa(T)))*] =
2Py (;) + (az(k —1)+ v2k> Qu,n <(‘;2> ;

where v2 = [ x2F(dx) and Py (r) and Qk (r) are given by

_2/n nk(1+r) \"?
Pi,n(r) = [(n/2) (2exp(k(1 + ”))>

Qi,n(r) =0(n/2,nk(1+r)/2)

with yo(.,.) denoting the regularized incomplete Gamma function.
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