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Introduction: Stock Price

dS(t) = µS(t)dt+ σ(t, St)S(t)dW (t), t > 0,

where µ ∈ R is the mean rate of return, the volatility term σ >

0 is a bounded function and W (t) is a Brownian motion on
a probability space (Ω,F , P ) with a filtration Ft. We also let
r > 0 be the risk-free rate of return of the market. We denote
St = S(t − τ), t > 0 and the initial data of S(t) is defined
by S(t) = ϕ(t), where ϕ(t) is a deterministic function with t ∈
[−τ,0], τ > 0.



Introduction: Stochastic Volatility with Delay and Jumps

dσ2(t,St)
dt = γV + α

τ

[∫ t
t−τ σ(u, Su)dW (u) +

∫ t
t−τ σ(u, Su)dÑ(u)

]2
− (α+ γ)σ2(t, St)

where N(t) is a Poisson process independent of W (t) with inten-
sity λ > 0 and Ñ(t) := N(t)− λt.

Here, V > 0 is a mean-reverting level (or long-term equilibrium
of σ2(t, St)), α, γ > 0, and α+ γ < 1.



Introduction: Stochastic Volatility with Delay and Jumps

dσ2(t,St)
dt = γV + α

τ

[∫ t
t−τ σ(u, Su)dW (u) +

∫ t
t−τ σ(u, Su)dÑ(u)

]2
− (α+ γ)σ2(t, St)

We suppose that γ > αλ.

We note that if γ > αλ, then the process σ2(t, St) remains positive
a.s. It is similar to the CIR process, which remains positive if all
the coefficients are positive and satisfy some inequality. We also
note that in many applications this condition γ > αλ is satisfied
(see our Numerical Examples).



Introduction: Stochastic Volatility with Delay and Jumps
(cntd)

Our model of stochastic volatility exhibits jumps and also past-
dependence: the behavior of a stock price right after a given
time t not only depends on the situation at t, but also on the
whole past (history) of the process S(t) up to time t.



Introduction: Stochastic Volatility with Delay and Jumps
(cntd)

This draws some similarities with fractional Brownian motion
models (see Mandelbrot (1997)) due to a long-range dependence
property.

Another advantage of this model is mean-reversion.

This model is also a continuous-time version of GARCH(1,1)
model (see Bollerslev (1986)) with jumps.



Motivation: Why Delay?

Some statistical studies of stock prices indicate the dependence
on past returns:

• Sheinkman and LeBaron (1989),

• Akgiray (1989)

• Kind, Liptser and Runggaldier (1991)



Motivation: Why Delay? (cntd)

• Hobson and Rogers (1998)

• Chang and Yoree (1999)

• Mohammed, Arriojas and Pap (2001)



Motivation: Why Delay? (cntd)

Our work is also based on the GARCH(1,1) model (see Bollerslev
(1986))

σ2
n = γV + α ln2(Sn−1/Sn−2) + (1− α− γ)σ2

n−1

or, more general,

σ2
n = γV +

α

l
ln2(Sn−1/Sn−1−l) + (1− α− γ)σ2

n−1

and the work of Duan (1995) where he showed that it is possible
to use the GARCH model as the basis for an internally consistent
option pricing model.



Motivation: Why Delay? (cntd)

If we write down the last equation in differential form we can
get the continuos-time GARCH with expectation of log-returns
of zero:

dσ2(t)

dt
= γV +

α

τ
ln2(

S(t)

S(t− τ)
)− (α+ γ)σ2(t)

If we incorporate non-zero expectation of log-return (using Itô
Lemma for ln S(t)

S(t−τ)) then we arrive to our continuous-time GARCH
model for stochastic volatility with delay:

dσ2(t, St)

dt
= γV +

α

τ

[∫ t
t−τ

σ(s, Ss)dW (s)
]2
− (α+ γ)σ2(t, St).



Motivation: Why Jumps?

The key risk factors considered in option pricing models, besides
the diffusive price risk of the underlying asset, are stochastic
volatility and jumps, both in the asset price and its volatility.
Models that include some or all of these factors were developed
by Merton (1976), Heston (1993), Bates (1996), Bakshi et al.
(1997) and Duffie et al. (2000).



Motivation: Why Jumps? (cntd)

The jumps in stock market volatility are found to be so active
that this discredits many recently proposed stochastic volatil-
ity models without jumps (see Todorov and Tauchen (2008),
Bollerslev et al (2008)).



Motivation: Why Jumps?

There is currently fairly compelling evidence for jumps in the
level of financial prices. The most convincing evidence comes
from recent nonparametric work using high-frequency data as
in Barndorff-Nielsen and Shephard (2007) and Aït-Sahalia and
Jacod (2008) among others.



Motivation: Why Jumps? (contd)

Paper by Todorov and Tauchen (2008) conducts a non-parametric
analysis of the market volatility dynamics using high-frequency
data on the VIX index compiled by the CBOE and the S&P500

index. Some attempts have been made to incorporate jumps in
stochastic volatility to price variance and volatility swaps (see
Howison et al. (2004)).



Motivation: Why Jumps? (cntd)

Eraker et al. (2000) use returns data to investigate the per-
formance of models with jumps in volatility using the class of
jump-in-volatility models proposed by Duffie et al. (2000). The
results in Eraker et al. (2000) show that the jump-in-volatility
models provide a significant better fit to the returns data.



The Model

Stock Price:

dS(t) = µS(t)dt+ σ(t, St)S(t)dW (t), t > 0,

SV with Delay and Jumps:

dσ2(t,St)
dt = γV + α

τ

[∫ t
t−τ σ(u, Su)dW (u) +

∫ t
t−τ σ(u, Su)dÑ(u)

]2
− (α+ γ)σ2(t, St)



Conditions

C1) σ(t, St) satisfies local Lipschitz and growth conditions;

C2)
∫ T
0 Eσ2(t, St)dt < +∞;

C3)
∫ T
0 ( r−µ

σ(t,St)
)2dt < +∞ a.s.

Condition C1) guarantees the existence and uniqueness of a solu-
tion of equations for S(t) and σ2(t) in Section 2 (see Mohammed
(1998)). Condition C2) guarantees the existence of Itô integral
in eqaution for σ2(t) and C3) guarantees the existence of risk-
neutral measure P ∗ (see below).



Risk-Neutral World

1) There is a probability measure P∗ equivalent to P such that

dP∗

dP
= exp

{
−
∫ T

0
θ(s)dW (s)−

1

2

∫ T
0
θ2(s)ds

}
is its Radon-Nikodym density, where

θ(t) =
µ− r
σ(t, St)

.



Risk-Neutral World (cntd)

2) The discounted asset price D(t) is a positive local martingale
with respect to P∗, and

W ∗(t) =
∫ t

0
θ(s)ds+W (t)

is a standard Brownian motion with respect to P∗.



Risk-Neutral World (cntd)

dS(t) = rS(t)dt+ σ(t, St)S(t)dW ∗(t)

and the asset volatility is defined then as follows:

dσ2(t,St)
dt = γV + α

τ

[∫ t
t−τ σ(s, Ss)dW ∗(s) +

∫ t
t−τ σ(u, Su)dÑ(u)− (µ− r)τ

]2
− (α+ γ)σ2(t, St).



Variance Swaps

Variance swaps are forward contracts on future realized stock
variance, the square of the future volatility. The easy way to
trade variance is to use variance swaps, sometimes called real-
ized variance forward contracts (see Carr and Madan (1998)).
Although options market participants talk of volatility, it is vari-
ance, or volatility squared, that has more fundamental signifi-
cance (see Demeterfi, K., Derman, E., Kamal, M., and Zou, J.
(1999)).



Variance Swaps (cntd)

A variance swap is a forward contract on annualized variance,
the square of the realized volatility. Its payoff at expiration is
equal to

N(σ2
R(S)−Kvar),

where σ2
R(S) is the realized stock variance(quoted in annual

terms) over the life of the contract,



Variance Swaps (cntd)

σ2
R(S) :=

1

T

∫ T
0
σ2(s)ds,

Kvar is the delivery price for variance, and N is the notional
amount of the swap in dollars per annualized volatility point
squared.



Variance Swaps (cntd)

The holder of variance swap at expiration receives N dollars for
every point by which the stock’s realized variance σ2

R(S) has
exceeded the variance delivery price Kvar. We note that usu-
ally N = αI, where α is a converting parameter such as 1 per
volatility-square, and I is a long-short index (+1 for long and -1
for short).



Variance Swaps (cntd)

Valuing a variance forward contract or swap is no different from
valuing any other derivative security. The value of a forward
contract P on future realized variance with strike price Kvar is
the expected present value of the future payoff in the risk-neutral
world:

P∗ = E∗{e−rT (σ2
R(S)−Kvar)},

where r is the risk-free discount rate corresponding to the ex-
piration date T, and E∗ denotes the expectation under the risk-
neutral measure P ∗.



Variance Swaps (cntd)

In tis way, a variance swap for stochastic volatility with delay is
a forward contract on annualized variance σ2

R(t, St). Its payoff at
expiration equals to

N(σ2
R(S)−Kvar),

where σ2
R(S) is the realized stock variance(quoted in annual

terms) over the life of the contract,

σ2
R(S) :=

1

T

∫ T
0
σ2(u, S(u− τ))du, τ > 0.



Pricing of Variance Swaps (cntd)

dσ2(t,St)
dt = γV + α

τ

[∫ t
t−τ σ(s, Ss)dW ∗(s) +

∫ t
t−τ σ(u, Su)dÑ(u)− (µ− r)τ

]2
− (α+ γ)σ2(t, St).

Let us take the expectations under risk-neutral measure P∗ on
the both sides of the equation above.



Pricing of Variance Swaps (cntd)

Denoting v(t) = E∗[σ2(t, St)], we obtain the following determin-
istic delay differential equation:

dv(t)

dt
= γV + ατ(µ− r)2 +

α(1 + λ)

τ

∫ t
t−τ

v(s)ds− (α+ γ)v(t).



Pricing of Variance Swaps (cntd)

Notice that the above equation has a stationary solution

v(t) ≡ X =
γV + ατ(µ− r)2

γ − αλ
.



Pricing of Variance Swaps (cntd)

Hence, the expectation of the realized variance, or say the fair
delivery price Kvar of a variance swap for stochastic volatility
with delay in stationary regime under risk-neutral measure P∗

equals to

Kvar = E∗[σ2(t, St)] = 1
T

∫ T
0 v(t)dt

= γV+ατ(µ−r)2

γ−αλ .



Pricing of Variance Swaps (cntd)

The price P of a variance swap at time t given delivery price K
in this case should be:

P = e−r(T−t)[
γV + ατ(µ− r)2

γ − αλ
−K].



Pricing of Variance Swaps (cntd)

dv(t)

dt
= γV + ατ(µ− r)2 +

α(1 + λ)

τ

∫ t
t−τ

v(s)ds− (α+ γ)v(t).

In general case, there is no way to write a solution of this equa-
tion in explicit form for arbitrarily given initial data.



Pricing of Variance Swaps (cntd)

But we can write an approximate solution for v(t) when t has
large values:

v(t) ≈ X + Ce−γt =
γV + ατ(µ− r)2

γ − αλ
+ Ce(αλ−γ)t.

where

C = v(0)−X = σ2
0 −

γV + ατ(µ− r)2

γ − αλ
.



Pricing of Variance Swaps (cntd)

We note, that the characteristic equation for the above equation
in this case has the following look

ρ2 + ρ(γ − αλ) = 0

and the solution of the equation is

ρ = (αλ− γ).



Pricing of Variance Swaps (cntd)

Hence, the expectation of the realized variance, or say the fair
delivery price Kvar of variance swap for stochastic volatility with
delay in general case under risk-neutral measure P∗ equals to

Kvar = E∗[σ2(t, St)] = 1
T

∫ T
0 v(t)dt

≈ 1
T

∫ T
0 [V + ατ(µ− r)2/γ + (σ2

0 − V − ατ(µ− r)2/γ)e(αλ−γ)t]dt

= γV+ατ(µ−r)2

γ−αλ + (σ2
0 −

γV+ατ(µ−r)2

γ−αλ )e
(αλ−γ)T−1
T (αλ−γ) .



Pricing of Variance Swaps (cntd)

The price P of a variance swap at time t given delivery price K
in this case should be:

P ≈ e−r(T−t)[
γV + ατ(µ− r)2

γ − αλ
+(σ2

0−
γV + ατ(µ− r)2

γ − αλ
)
e(αλ−γ)T − 1

T (αλ− γ)
−K].



Delay as a Measure of Risk

By previous results we have:

E∗[σ2(t, St)] = 1
T

∫ T
0 v(t)dt

≈ 1
T

∫ T
0 [V + ατ(µ− r)2/γ + (σ2

0 − V − ατ(µ− r)2/γ)

× e(αλ−γ)t]dt

= γV+ατ(µ−r)2

γ−αλ + (σ2
0 −

γV+ατ(µ−r)2

γ−αλ )e
(αλ−γ)T−1
T (αλ−γ) .



Delay as a Measure of Risk (contd)

E∗[σ2(t, St)] = γV+ατ(µ−r)2

γ−αλ
+ (σ2

0 −
γV+ατ(µ−r)2

γ−αλ )e
(αλ−γ)T−1
T (αλ−γ) .

This expression contains all the information about our model,
since it contains all the initial parameters.

We note that σ2
0 = σ2(0, ϕ(−τ)).

So the sign of the second term in the above expression depends
on the relationship between σ2

0 and γV+ατ(µ−r)2

γ−αλ .



Delay as a Measure of Risk (contd)

E∗[σ2(t, St)] = γV+ατ(µ−r)2

γ−αλ
+ (σ2

0 −
γV+ατ(µ−r)2

γ−αλ )e
(αλ−γ)T−1
T (αλ−γ) .

If σ2
0 >

γV+ατ(µ−r)2

γ−αλ , the second term is positive and E∗[σ2(t, St)]

stays above γV+ατ(µ−r)2

γ−αλ , which means the risk is high.



Delay as a Measure of Risk (contd)

E∗[σ2(t, St)] = γV+ατ(µ−r)2

γ−αλ
+ (σ2

0 −
γV+ατ(µ−r)2

γ−αλ )e
(αλ−γ)T−1
T (αλ−γ) .

If

σ2
0 <

γV + ατ(µ− r)2

γ − αλ
,

the second term is negative and E∗[σ2(t, St)] stays below γV+ατ(µ−r)2

γ−αλ ,
which means the risk is low.



Delay as a Measure of Risk (contd)

Therefore,

σ2
0 =

γV + ατ(µ− r)2

γ − αλ
defines the measure of risk in the stochastic volatility model with
delay and jumps.



Delay as a Measure of Risk (contd)

If

σ2
0 =

γV + ατ(µ− r)2

γ − αλ
is satisfied, then the value of risk is the following constant

γV + ατ(µ− r)2

γ − αλ
= σ2

0.



Delay as a Measure of Risk (contd)

To reduce and control the risk we need to take into account the
following relationship with respect to the delay τ :

σ2
0 <

γV + ατ(µ− r)2

γ − αλ
or τ >

σ2
0(γ − αλ)− γV
α(µ− r)2

.

It follows that if delay is larger (or longer) of this value σ2
0(γ−αλ)−γV
α(µ−r)2 ,

then the risk is lower.



Delay as a Measure of Risk (contd)

Also, there is a way to control the delay but paying a higher risk.
If we bound the delay by the following relation

τ <
σ2

0(γ − αλ)− γV
α(µ− r)2

,

then

σ2
0 >

γV + ατ(µ− r)2

γ − αλ
.

It follows that if delay is smaller (shorter) of the value σ2
0(γ−αλ)−γV
α(µ−r)2 ,

then the risk is higher.



Numerical Example 1: S&P60 Canada Index

Statistics on Log Returns S&P60 Canada Index
Series: Log Returns S&P60 Canada In-

dex
Sample: 1 1300
Observations: 1300
Mean 0.000235
Median 0.000593
Maximum 0.051983
Minimum -0.101108
Std. Dev. 0.013567
Skewness -0.665741
Kurtosis 7.787327



0 1 2 3 4 5 6 7 8 9 10
1

1.2

1.4

1.6

1.8

2

2.2
x 10

−4

τ

E
P

*[V
ar

(S
)]

Dependence of Var(S) Swap on Delay

Fig. 1. Dependence of Variance Swap

with Delay on Delay (S&P60 Canada

Index).
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Fig. 2. Dependence of Variance Swap

with Delay on Maturity (S&P60

Canada Index).
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Fig. 3. Variance Swap with Delay for

S&P60 Canada Index.



Numerical Example 2: S&P500 Index

Statistics on Log Returns S&P500 Index
Series: Log returns S&P500 Index
Sample: 1 1006
Observations: 1006
Mean 0.000263014
Median 8.84424E-05
Maximum 0.034025839
Minimum -0.045371484
Std. Dev. 0.00796645
Variance 6.34643E-05
Skewness -0.178481359
Kurtosis 3.296144083
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Fig. 4. Dependence of Variance Swap

with Delay on Delay (S&P500 Index).
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Fig. 5. Dependence of Variance Swap

with Delay on Maturity (S&P500

Index).
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Fig. 6. Variance Swap with Delay for

S&P500 Index.
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The End

Thank you for your time and attention!


