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Motivation

Research goal
e Find a robust method to improve Monte Carlo simulation
performance when valuating path dependent options.
e Valid for stochastic volatility models.
To achieve this goal

e Use sample path Large Deviations Principles (LDP) to identify an
asymptotically optimal importance sampling change of drift.
e Problem : standard LDP results do not apply to stochastic volatility
models.
e Volatility can degenerate, local Lipschitz condition violated.

Secondary research goal

e Prove LDP for common stochastic volatility models (e.g. Heston,
Hull & White).



Talk Outline

Focus on path dependent option pricing.

e Problem setup.

Review of Importance Sampling.
e Overview on constructing Asymptotically Optimal changes of drift.
e Valid for general diffusions.

Specification to Heston stochastic volatility model.

Numerical example
e Asian put option in Heston model.



Path Dependent Option Pricing

Setup:
e S={5;0<t< T} : Price process
o G = G(S) : Path dependent option payoff

Closed-form solution for Ep [G] not easily calculated.

Primary example
e Heston model:

% = rdt + /vedW,
t
de = KJ(Q — Vt) dt + §\/7tdBt

e Asian put option:



Monte Carlo Simulation

To calculate Ep [G], run a Monte Carlo simulation.
e Robust : only have to replicate price/volatility dynamics.
Problem : simulation inefficient if G only pays off in rare events.
e G # 0 a “Large Deviation” from the norm.
e Asian put : K >> 5.
Estimating confidence intervals is difficult.

e Simulation variance artificially low.



Improving the Monte Carlo Simulation

Goal : Run an effective Monte Carlo simulation by using Importance
Sampling.
e Change simulation measure from P to @ and change option payoff
from G to G% so that

dP
Variance under Q:
dP _ 2 dP 2

Optimization problem : minge 4 Ep [Gz%}

e A an appropriate family of equivalent measures.



Example

Arithmetic average Asian put option

G(S) = (K - _}_/OTStdt)Jr

in the Heston model when K >> S;.

Change of measure corresponds to two changes in drift:
e One for the volatility v.
e One for the asset price S.

Change the drift so option is more in the money.

o Compensate for change in drift by including the "scaling factor" in
the option payoff.



Optimization Considerations

General optimization problem ill-posed : zero variance achieved for

Q ¢
dP ~ E,[G]

e Not allowable because Ep [G] unknown in the first place.
Questions:

e How to adjust notion of optimality?

e How to choose an appropriate family of measures A?

e How to provide an optimal answer for a large class of functionals G7



Previous Work

Glasserman, Heidelberger, Shahabuddin (1999): use LDP to find an
efficient change of measure.

e Work in Black-Scholes model. Partition [0, T] to reduce to a finite
dimensional problem.

e Approximate Ep {Gz%} by taking an asymptotic expansion as noise
parameter goes away.

e Solve an associated minimization problem.

Guasoni, R. (2008) : extend methodology to continuous time in
Black-Scholes model.

e Find an optimal continuous change of drift.

o Characterize optimal change of drift via an Euler-Lagrange equation,
possibly with an explicit solution.



Asymptotic Optimality - General Idea

For now, consider the optimization problem:

2£]

dnf, Ep [G(X) dQ

X is a d-dimensional diffusion satisfying
where b: RY — RY, 5 : RY s RI*d

Construct A by taking Cameron-Martin-Girsanov changes of measure:

op =P /0 u(h)edW, — 5/0 llu(h)e||“dt ), h € HT

u(h)e = o~ (he) (ht - b(ht))
HX — {h | h(0) = x,/OT lu(h)e|2de < oo}

A:{M

where



Asymptotic Optimality (2)
Imbed X into the family of diffusions (for 0 < & < 1):

dX¢ = b(X{)dt + e (X{)dW; X5 = x
For h € H¥ set
H (X, W) = 2log G(X) 7/ (h)edW: + / lu(h)e||dt
0
With We = \/eW
2 dP 1 h e €
at € = 1. The small noise approximation is

L(h) = limsupelog Ep {exp <§Hh(XE, Wg)>}
|0

his asymptotically optimal if

h = argmin L(h)
{(herX}



Asymptotic Optimality and LDP
As e | 0, (X, W*) “converges” to (¢+,0) where ¢ solves
ét = b(¢t)a ¢0 =X

Sample path LDP identify precise rate of convergence for the law of
()(57 WE) to (5(¢’0).

Classical result (Freidlin-Wentzell): for H : C[0, T]? — R bounded,
continuous (supremum norm topology)

IsimalogE [e_%H(XE’WE)] =- }(H(ciw) +1(¢,9))

inf
{(¢,¥)eCl0,T]?

e Valid for b, o bounded, Lipschitz (some relaxation OK)
e Rate function:

1T ) .
1(¢,¢) = {;Ofo u(P)ell?dt ¢ € Hy, v = u(¢)

else



Variational Considerations
Freidlin-Wentzell asymptotics imply

= s (20g6(0)+ 3 [ luth) -~ u(ohlPoe— [ Ju(o)|Per)

{¢eH¥}

Asymptotically optimal change of measure found by solving

nf, s (210g6(0)+ 3 [ k)~ onlPat— [ fu(o)der)

{heBX} (penXy
(1)

A lower bound:

sup (2 g G(¢) — [ ’ ||u(¢)t||2dt) (2)

{oeEX}

Practical plan:

N

e Solve (2) and find maximizer ¢.
o With h = ¢, see if L(h) equals value in (2).



Interpretation

For any family Q¢ of equivalent measures

lim ionfalog Ep { (X©)?/e dP} > 2|imlionf5|og Ep [G(XE)I/E]

dQs
= sup } (2 log G(¢) —/OTIIU(¢)r||2dt>

{pcHX

o If practical plan works, f is robust.
Consider when X = W. Euler-Lagrange equation for (2):

-
D, (2 log G(¢) — / H‘Zﬁtszt) =0 D, : Gateaux derivative towards 7
0

If G is Fréchet differentiable, using a Taylor expansion
dP I
s [6W) ] = Geyew (= [ 16:at) €y oo (ROW))

where R(W) contains no linear terms.
e Variance due to linear part of log(G) eliminated.



Application to Heston Model

In the Heston model, X = (S,v), W = (B, Z) and

() e (55 %)

where p = /1 — p2.

BIG PROBLEM : ¢ is neither elliptic nor locally Lipschitz.
o Freidlin Wentzell LDP must be extended.

Fortunately:
o If v satisfies a LDP by itself, then so does (S, v). (R. (2010))
e v satisfies LDP (Donati-Martin, Rouault, Yor, Zani (2004))



Application (2) - Questions
Does the Freidlin-Wentzell result apply to the unbounded and
discontinuous function

T T
HP (X, W) = 2log G(X) _/ u(hY.dWs +%/ u(h)e|2d 2
0 0

e Yes, if G bounded from above and h smooth enough.

T T
/ u(h)sdWe = u(h)7Wr — / i(h), Wedt
0 ]

Do the variational problems in (1) and (2) admit maximizers?
e Yes, if G is continuous and bounded from above. (R. (2010))

e Transfer problem to L2[0, T] via u: H®*) — 12[0, T].
e u~ !, G weakly continuous, functionals in (1), (2) coercive.



Numerical Example

For the Asian put option, the following parameter values are considered
(Heston (1993))

k=2,0=0.09¢=02,v = 0.04,
r=0.057T=1,5 =50K=30,p=—05.

Asymptotic Optimality holds for h solving (2) with these values.
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Numerical Example (2)

Optimal volatility drift
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Interpretation:
e Under P the option is out of the money.

e To bring the option into the money either

e The “average” price path must come down.
e The “average” volatility must go up.



Future Work

Run numerical simulations to see actual variance reduction.

o Black-Scholes model : 5X — 10X variance reduction typical. Does
this carry over?

Apply methodology to options which depend more directly on volatility.

e Out of the money call or put : variance reduction obtained primarily
by changing price drift.

e What about for a straddle option? No obvious direction to move the
price.

Derive LDP for other stochastic volatility models.
e SABR, CEV
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